Contents

1 Getting started

brgedata includes a collection of BRGE omic and exposome data from the same cohort. The diferent objects guarantees a minimum of samples in common between all sets.

Data available in this R package:

Data Type Number of Samples Number of Features Technology Object Name Class
Exposome 110 15 brge_expo ExposomeSet
Transcriptome 75 67528 Affymetrix HTA 2.0 brge_gexp ExpressionSet
Methylome 20 392277 Illumina Human Methylation 450K brge_methy GenomicRatioSet
Proteome 90 47 brge_prot ExpressionSet

sex and age was included as phenotipic data in each set. Moreover, the ExposomeSet includes asthma status and rhinitis status of each sample.

2 Data Resources

2.1 Exposome Data

To load the exposome data, stored in an ExposomeSet, run the follow commands:

data("brge_expo", package = "brgedata")
brge_expo
## Object of class 'ExposomeSet' (storageMode: environment)
##  . exposures description:
##     . categorical:  0 
##     . continuous:  15 
##  . exposures transformation:
##     . categorical: 0 
##     . transformed: 0 
##     . standardized: 0 
##     . imputed: 0 
##  . assayData: 15 exposures 110 individuals
##     . element names: exp, raw 
##     . exposures: Ben_p, ..., PCB153 
##     . individuals: x0001, ..., x0119 
##  . phenoData: 110 individuals 6 phenotypes
##     . individuals: x0001, ..., x0119 
##     . phenotypes: Asthma, ..., Age 
##  . featureData: 15 exposures 12 explanations
##     . exposures: Ben_p, ..., PCB153 
##     . descriptions: Family, ..., .imp 
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_expo:

Data Type Number of Samples Number of Features Technology Object Name Class
Exposome 110 15 brge_expo ExposomeSet

2.2 Transcriptome Data

To load the transcriptome data, saved in an ExpressionSet, run the follow commands:

data("brge_gexp", package = "brgedata")
brge_gexp
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 67528 features, 100 samples 
##   element names: exprs 
## protocolData: none
## phenoData
##   sampleNames: x0001 x0002 ... x0139 (100 total)
##   varLabels: age sex
##   varMetadata: labelDescription
## featureData
##   featureNames: TC01000001.hg.1 TC01000002.hg.1 ...
##     TCUn_gl000247000001.hg.1 (67528 total)
##   fvarLabels: transcript_cluster_id probeset_id ... notes (11 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_gexp:

Data Type Number of Samples Number of Features Technology Object Name Class
Transcriptome 75 67528 Affymetrix HTA 2.0 brge_gexp ExpressionSet

2.3 Methylome Data

To load the methylation data, encapsulated in a GenomicRatioSet, run the follow commands:

data("brge_methy", package = "brgedata")
brge_methy
## class: GenomicRatioSet 
## dim: 392277 20 
## metadata(0):
## assays(1): Beta
## rownames(392277): cg13869341 cg24669183 ... cg26251715 cg25640065
## rowData names(14): Forward_Sequence SourceSeq ...
##   Regulatory_Feature_Group DHS
## colnames(20): x0017 x0043 ... x0077 x0079
## colData names(9): age sex ... Mono Neu
## Annotation
##   array: IlluminaHumanMethylation450k
##   annotation: ilmn12.hg19
## Preprocessing
##   Method: NA
##   minfi version: NA
##   Manifest version: NA

The summary of the data contained by brge_methy:

Data Type Number of Samples Number of Features Technology Object Name Class
Methylome 20 392277 Illumina Human Methylation 450K brge_methy GenomicRatioSet

2.4 Proteome Data

To load the protein data, stored in an ExpressionSet, run the follow commands:

data("brge_prot", package = "brgedata")
brge_prot
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 47 features, 90 samples 
##   element names: exprs 
## protocolData: none
## phenoData
##   sampleNames: x0001 x0002 ... x0090 (90 total)
##   varLabels: age sex
##   varMetadata: labelDescription
## featureData
##   featureNames: Adiponectin_ok Alpha1AntitrypsinAAT_ok ...
##     VitaminDBindingProte_ok (47 total)
##   fvarLabels: chr start end
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:

The summary of the data contained by brge_prot:

Data Type Number of Samples Number of Features Technology Object Name Class
Proteome 90 47 brge_prot ExpressionSet

Session info

## R version 4.5.0 RC (2025-04-04 r88126)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] BiocStyle_2.36.0
## 
## loaded via a namespace (and not attached):
##   [1] splines_4.5.0               BiocIO_1.18.0              
##   [3] norm_1.0-11.1               bitops_1.0-9               
##   [5] tibble_3.2.1                preprocessCore_1.70.0      
##   [7] XML_3.99-0.18               rpart_4.1.24               
##   [9] lifecycle_1.0.4             Rdpack_2.6.4               
##  [11] lattice_0.22-7              MASS_7.3-65                
##  [13] base64_2.0.2                scrime_1.3.5               
##  [15] flashClust_1.01-2           backports_1.5.0            
##  [17] magrittr_2.0.3              minfi_1.54.0               
##  [19] limma_3.64.0                Hmisc_5.2-3                
##  [21] sass_0.4.10                 rmarkdown_2.29             
##  [23] jquerylib_0.1.4             yaml_2.3.10                
##  [25] doRNG_1.8.6.2               askpass_1.2.1              
##  [27] DBI_1.2.3                   minqa_1.2.8                
##  [29] RColorBrewer_1.1-3          multcomp_1.4-28            
##  [31] abind_1.4-8                 quadprog_1.5-8             
##  [33] GenomicRanges_1.60.0        purrr_1.0.4                
##  [35] RCurl_1.98-1.17             BiocGenerics_0.54.0        
##  [37] nnet_7.3-20                 TH.data_1.1-3              
##  [39] sandwich_3.1-1              circlize_0.4.16            
##  [41] GenomeInfoDbData_1.2.14     IRanges_2.42.0             
##  [43] S4Vectors_0.46.0            ggrepel_0.9.6              
##  [45] rentrez_1.2.3               genefilter_1.90.0          
##  [47] annotate_1.86.0             DelayedMatrixStats_1.30.0  
##  [49] codetools_0.2-20            DelayedArray_0.34.0        
##  [51] xml2_1.3.8                  DT_0.33                    
##  [53] tidyselect_1.2.1            gmm_1.8                    
##  [55] shape_1.4.6.1               UCSC.utils_1.4.0           
##  [57] lme4_1.1-37                 beanplot_1.3.1             
##  [59] matrixStats_1.5.0           stats4_4.5.0               
##  [61] base64enc_0.1-3             illuminaio_0.50.0          
##  [63] GenomicAlignments_1.44.0    jsonlite_2.0.0             
##  [65] multtest_2.64.0             Formula_1.2-5              
##  [67] survival_3.8-3              iterators_1.0.14           
##  [69] emmeans_1.11.0              foreach_1.5.2              
##  [71] tools_4.5.0                 pryr_0.1.6                 
##  [73] Rcpp_1.0.14                 glue_1.8.0                 
##  [75] gridExtra_2.3               SparseArray_1.8.0          
##  [77] xfun_0.52                   MatrixGenerics_1.20.0      
##  [79] GenomeInfoDb_1.44.0         dplyr_1.1.4                
##  [81] HDF5Array_1.36.0            BiocManager_1.30.25        
##  [83] fastmap_1.2.0               boot_1.3-31                
##  [85] rhdf5filters_1.20.0         openssl_2.3.2              
##  [87] caTools_1.18.3              digest_0.6.37              
##  [89] R6_2.6.1                    estimability_1.5.1         
##  [91] imputeLCMD_2.1              colorspace_2.1-1           
##  [93] gtools_3.9.5                RSQLite_2.3.9              
##  [95] h5mread_1.0.0               tidyr_1.3.1                
##  [97] generics_0.1.3              data.table_1.17.0          
##  [99] rtracklayer_1.68.0          httr_1.4.7                 
## [101] htmlwidgets_1.6.4           S4Arrays_1.8.0             
## [103] scatterplot3d_0.3-44        pkgconfig_2.0.3            
## [105] gtable_0.3.6                blob_1.2.4                 
## [107] siggenes_1.82.0             impute_1.82.0              
## [109] XVector_0.48.0              htmltools_0.5.8.1          
## [111] bookdown_0.43               multcompView_0.1-10        
## [113] scales_1.3.0                Biobase_2.68.0             
## [115] rexposome_1.30.0            png_0.1-8                  
## [117] tmvtnorm_1.6                leaps_3.2                  
## [119] reformulas_0.4.0            corrplot_0.95              
## [121] knitr_1.50                  rstudioapi_0.17.1          
## [123] tzdb_0.5.0                  rjson_0.2.23               
## [125] reshape2_1.4.4              curl_6.2.2                 
## [127] coda_0.19-4.1               checkmate_2.3.2            
## [129] nlme_3.1-168                nloptr_2.2.1               
## [131] bumphunter_1.50.0           cachem_1.1.0               
## [133] zoo_1.8-14                  rhdf5_2.52.0               
## [135] GlobalOptions_0.1.2         stringr_1.5.1              
## [137] KernSmooth_2.23-26          parallel_4.5.0             
## [139] foreign_0.8-90              AnnotationDbi_1.70.0       
## [141] restfulr_0.0.15             GEOquery_2.76.0            
## [143] pillar_1.10.2               grid_4.5.0                 
## [145] reshape_0.8.9               vctrs_0.6.5                
## [147] gplots_3.2.0                pcaMethods_2.0.0           
## [149] xtable_1.8-4                cluster_2.1.8.1            
## [151] htmlTable_2.4.3             evaluate_1.0.3             
## [153] readr_2.1.5                 GenomicFeatures_1.60.0     
## [155] Rsamtools_2.24.0            locfit_1.5-9.12            
## [157] mvtnorm_1.3-3               cli_3.6.4                  
## [159] compiler_4.5.0              rngtools_1.5.2             
## [161] rlang_1.1.6                 crayon_1.5.3               
## [163] nor1mix_1.3-3               mclust_6.1.1               
## [165] plyr_1.8.9                  stringi_1.8.7              
## [167] lsr_0.5.2                   BiocParallel_1.42.0        
## [169] munsell_0.5.1               Biostrings_2.76.0          
## [171] glmnet_4.1-8                Matrix_1.7-3               
## [173] hms_1.1.3                   sparseMatrixStats_1.20.0   
## [175] bit64_4.6.0-1               ggplot2_3.5.2              
## [177] Rhdf5lib_1.30.0             KEGGREST_1.48.0            
## [179] statmod_1.5.0               FactoMineR_2.11            
## [181] SummarizedExperiment_1.38.0 rbibutils_2.3              
## [183] memoise_2.0.1               bslib_0.9.0                
## [185] bit_4.6.0