Downsampling

Timothy Keyes

2025-04-15

library(tidytof)
library(dplyr)
library(ggplot2)

count <- dplyr::count

Often, high-dimensional cytometry experiments collect tens or hundreds or millions of cells in total, and it can be useful to downsample to a smaller, more computationally tractable number of cells - either for a final analysis or while developing code.

To do this, {tidytof} implements the tof_downsample() verb, which allows downsampling using 3 methods: downsampling to an integer number of cells, downsampling to a fixed proportion of the total number of input cells, or downsampling to a fixed cellular density in phenotypic space.

Downsampling with tof_downsample()

Using {tidytof}’s built-in dataset phenograph_data, we can see that the original size of the dataset is 1000 cells per cluster, or 3000 cells in total:

data(phenograph_data)

phenograph_data |>
    dplyr::count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1            1000
#> 2 cluster2            1000
#> 3 cluster3            1000

To randomly sample 200 cells per cluster, we can use tof_downsample() using the “constant” method:

phenograph_data |>
    # downsample
    tof_downsample(
        group_cols = phenograph_cluster,
        method = "constant",
        num_cells = 200
    ) |>
    # count the number of downsampled cells in each cluster
    count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1             200
#> 2 cluster2             200
#> 3 cluster3             200

Alternatively, if we wanted to sample 50% of the cells in each cluster, we could use the “prop” method:

phenograph_data |>
    # downsample
    tof_downsample(
        group_cols = phenograph_cluster,
        method = "prop",
        prop_cells = 0.5
    ) |>
    # count the number of downsampled cells in each cluster
    count(phenograph_cluster)
#> # A tibble: 3 × 2
#>   phenograph_cluster     n
#>   <chr>              <int>
#> 1 cluster1             500
#> 2 cluster2             500
#> 3 cluster3             500

And finally, we might also be interested in taking a slightly different approach to downsampling that reduces the number of cells not to a fixed constant or proportion, but to a fixed density in phenotypic space. For example, the following scatterplot demonstrates that there are certain areas of phenotypic density in phenograph_data that contain more cells than others along the cd34/cd38 axes:

rescale_max <-
    function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) {
        x / from[2] * to[2]
    }

phenograph_data |>
    # preprocess all numeric columns in the dataset
    tof_preprocess(undo_noise = FALSE) |>
    # plot
    ggplot(aes(x = cd34, y = cd38)) +
    geom_hex() +
    coord_fixed(ratio = 0.4) +
    scale_x_continuous(limits = c(NA, 1.5)) +
    scale_y_continuous(limits = c(NA, 4)) +
    scale_fill_viridis_c(
        labels = function(x) round(rescale_max(x), 2)
    ) +
    labs(
        fill = "relative density"
    )

plot of chunk unnamed-chunk-5

To reduce the number of cells in our dataset until the local density around each cell in our dataset is relatively constant, we can use the “density” method of tof_downsample:

phenograph_data |>
    tof_preprocess(undo_noise = FALSE) |>
    tof_downsample(method = "density", density_cols = c(cd34, cd38)) |>
    # plot
    ggplot(aes(x = cd34, y = cd38)) +
    geom_hex() +
    coord_fixed(ratio = 0.4) +
    scale_x_continuous(limits = c(NA, 1.5)) +
    scale_y_continuous(limits = c(NA, 4)) +
    scale_fill_viridis_c(
        labels = function(x) round(rescale_max(x), 2)
    ) +
    labs(
        fill = "relative density"
    )

plot of chunk unnamed-chunk-6

Thus, we can see that the density after downsampling is more uniform (though not exactly uniform) across the range of cd34/cd38 values in phenograph_data.

Additional documentation

For more details, check out the documentation for the 3 underlying members of the tof_downsample_* function family (which are wrapped by tof_downsample):

Session info

sessionInfo()
#> R version 4.5.0 RC (2025-04-04 r88126)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] tidyr_1.3.1                 stringr_1.5.1              
#>  [3] HDCytoData_1.27.0           flowCore_2.20.0            
#>  [5] SummarizedExperiment_1.38.0 Biobase_2.68.0             
#>  [7] GenomicRanges_1.60.0        GenomeInfoDb_1.44.0        
#>  [9] IRanges_2.42.0              S4Vectors_0.46.0           
#> [11] MatrixGenerics_1.20.0       matrixStats_1.5.0          
#> [13] ExperimentHub_2.16.0        AnnotationHub_3.16.0       
#> [15] BiocFileCache_2.16.0        dbplyr_2.5.0               
#> [17] BiocGenerics_0.54.0         generics_0.1.3             
#> [19] forcats_1.0.0               ggplot2_3.5.2              
#> [21] dplyr_1.1.4                 tidytof_1.2.0              
#> 
#> loaded via a namespace (and not attached):
#>   [1] jsonlite_2.0.0          shape_1.4.6.1           magrittr_2.0.3         
#>   [4] farver_2.1.2            rmarkdown_2.29          vctrs_0.6.5            
#>   [7] memoise_2.0.1           sparsevctrs_0.3.3       htmltools_0.5.8.1      
#>  [10] S4Arrays_1.8.0          curl_6.2.2              SparseArray_1.8.0      
#>  [13] sass_0.4.10             parallelly_1.43.0       bslib_0.9.0            
#>  [16] lubridate_1.9.4         cachem_1.1.0            commonmark_1.9.5       
#>  [19] igraph_2.1.4            mime_0.13               lifecycle_1.0.4        
#>  [22] iterators_1.0.14        pkgconfig_2.0.3         Matrix_1.7-3           
#>  [25] R6_2.6.1                fastmap_1.2.0           GenomeInfoDbData_1.2.14
#>  [28] future_1.40.0           digest_0.6.37           colorspace_2.1-1       
#>  [31] AnnotationDbi_1.70.0    irlba_2.3.5.1           RSQLite_2.3.9          
#>  [34] labeling_0.4.3          filelock_1.0.3          cytolib_2.20.0         
#>  [37] yardstick_1.3.2         timechange_0.3.0        httr_1.4.7             
#>  [40] polyclip_1.10-7         abind_1.4-8             compiler_4.5.0         
#>  [43] bit64_4.6.0-1           withr_3.0.2             doParallel_1.0.17      
#>  [46] viridis_0.6.5           DBI_1.2.3               hexbin_1.28.5          
#>  [49] ggforce_0.4.2           MASS_7.3-65             lava_1.8.1             
#>  [52] embed_1.1.5             rappdirs_0.3.3          DelayedArray_0.34.0    
#>  [55] tools_4.5.0             future.apply_1.11.3     nnet_7.3-20            
#>  [58] glue_1.8.0              grid_4.5.0              Rtsne_0.17             
#>  [61] recipes_1.2.1           gtable_0.3.6            tzdb_0.5.0             
#>  [64] class_7.3-23            data.table_1.17.0       hms_1.1.3              
#>  [67] utf8_1.2.4              tidygraph_1.3.1         XVector_0.48.0         
#>  [70] RcppAnnoy_0.0.22        markdown_2.0            ggrepel_0.9.6          
#>  [73] BiocVersion_3.21.1      foreach_1.5.2           pillar_1.10.2          
#>  [76] RcppHNSW_0.6.0          splines_4.5.0           tweenr_2.0.3           
#>  [79] lattice_0.22-7          survival_3.8-3          bit_4.6.0              
#>  [82] RProtoBufLib_2.20.0     tidyselect_1.2.1        Biostrings_2.76.0      
#>  [85] knitr_1.50              gridExtra_2.3           litedown_0.7           
#>  [88] xfun_0.52               graphlayouts_1.2.2      hardhat_1.4.1          
#>  [91] timeDate_4041.110       stringi_1.8.7           UCSC.utils_1.4.0       
#>  [94] yaml_2.3.10             evaluate_1.0.3          codetools_0.2-20       
#>  [97] ggraph_2.2.1            tibble_3.2.1            BiocManager_1.30.25    
#> [100] cli_3.6.4               uwot_0.2.3              rpart_4.1.24           
#> [103] munsell_0.5.1           jquerylib_0.1.4         Rcpp_1.0.14            
#> [106] globals_0.16.3          png_0.1-8               parallel_4.5.0         
#> [109] gower_1.0.2             readr_2.1.5             blob_1.2.4             
#> [112] listenv_0.9.1           glmnet_4.1-8            viridisLite_0.4.2      
#> [115] ipred_0.9-15            ggridges_0.5.6          scales_1.3.0           
#> [118] prodlim_2024.06.25      purrr_1.0.4             crayon_1.5.3           
#> [121] rlang_1.1.6             KEGGREST_1.48.0