
Using ReportingTools within Shiny Applications

Gabriel Becker and Jessica L. Larson

May 1, 2024

Contents
1 Introduction 2

2 Changes to ui.R when using ReportingTools 2

3 Changes to server.R when using ReportingTools 3

4 References 4

1

1 Introduction
A primary strength of ReportingTools is that it provides powerful, customizable facilities for creating rich, in-
teractive (sortable, filterable, pagable, etc.) and aesthetically pleasing HTML tables based on many disparate types
of R objects. shiny is a Web application framework developed by RStudio, Inc. which allows the creation, and
deployment of Web applications using only R code. Often these Web applications involve the display of R objects or
output, but formatting and rendering of complex R objects is not the focus of the shiny framework.

Using the techniques in this vignette, ReportingTools’ formatting and display capabilities, including both
the default mechanisms and the full range of customizable behavior, can be incorporated into shiny applications,
allowing the creation of powerful Web applications which involve the display of R objects representing complex data
and analysis results. This vignette assumes knowledge of the shiny framework. Readers who are not familiar with
shiny are encouraged to read the official shiny tutorial here before continuing.

Figure 1: A shiny web application which uses ReportingTools to display R data.frame objects

The example we will discuss in this document, pictured above, gives the viewer the opportunity to choose between
three data frames and displays both a summary and a ReportingTools-powered table containing the chosen data. We
will discuss in detail only portions of the code specific to the interface between shiny and ReportingTools. Full
code for the application is included in our package in the inst/examples/shinyexample directory. To run the example,
copy the inst/examples/shinyexample/Ui.R and inst/examples/shinyexample/server.R files
to your working directory run the following from an R session:

> library(shiny)
> myRunApp()

2 Changes to ui.R when using ReportingTools
The single largest change to a ui.R file in order to add ReportingTools functionality is that ReportingTools’
JavaScript and CSS files must be included in the header of the resulting page so that the ReportingTools tables
function properly.

We define a function custHeaderPanel function which accepts the title and windowTitle arguments
accepted by shiny’s headerPanel function but also accepts additional arguments js and css. These are expected
to be character vectors which specify locations of additional Javascript and CSS libraries, respectively. These files are
then read and inserted into the header as code in <script> and <style> tags, respectively.

2

http://rstudio.github.com/shiny/tutorial/

With this function defined we are able to use it within the standard shiny page layout functions, such as
pageWithSidebar, in place of the headerPanel function. In particular, we include all (Javascript) files in
extdata/jslib and all Twitter Bootstrap based CSS files in extdata/csslib:

> custHeaderPanel("ReportingTools",
+ js = list.files(system.file("extdata/jslib", package="ReportingTools"),
+ full.names=TRUE),
+ css = list.files(system.file("extdata/csslib", package="ReportingTools"),
+ pattern="bootstrap", full.names=TRUE),
+)

These Javascript and CSS files will be included in the header of the resulting dynamic HTML page, allowing our
ReportingTools-based output to behave correctly.

Code for specifying input controls is identical whether or not ReportingTools is being used to format the
output and is omitted here.

Finally, output elements which will be formatted by ReportingTools should be declared as htmlOutput.
We do this for the view2 element in the code below:

> mainPanel(
+ verbatimTextOutput("summary"),
+ htmlOutput("view2")
+)

This indicates to the shiny system that the output will be HTML code ready to be inserted directly into the
specified element. With this our page layout is defined and we are ready to write the server.R code which will populate
it.

3 Changes to server.R when using ReportingTools
Our task here is to specify a rendering function which can interface with the ReportingTools publish mechanism.
To do this we first create a Report (within server.R, outside of any function calls) with ReportHandlers created
via the shinyHandlers constructor:

> myrep = HTMLReport(reportDirectory = "./",shortName="bigtest",
+ handlers = shinyHandlers)

These ReportHandlers will stream the HTML form of any elements added to our Report directly to Rout (the
same as the default destination of cat, and one used heavily by shiny to collate output).

We then use (or define) a custom rendering function, renderRepTools. By using this custom rendering mech-
anism and ReportHandlers combination, shiny is able to “hear” elements being added to our report and insert
them into the dynamic HTML of our Web App.

To make use of this we simply publish elements to our report within the expression passed to renderRepTools:

> ###use RT to display output
> output$view2 <- renderRepTools({
+ publish(datasetInput(), htmlrep, .modifyDF = modifyInput())
+ })

The resulting web application is controlled entirely by shiny, but has the added rendering power built into
ReportingTools. Though we used a standard data.frame in this example, we can expand this application
to more general biological data and Bioconductor objects which would be difficult to effectively display with-
out ReportingTools. Furthermore, all customization mechanisms for the HTML output discussed in the other
vignettes are fully functional in this setting.

3

4 References
Huntley, M.A., Larson, J.L., Chaivorapol, C., Becker, G., Lawrence, M., Hackney, J.A., and J.S. Kaminker. (2013).
ReportingTools: an automated results processing and presentation toolkit for high throughput genomic analyses.
Bioinformatics. 29(24): 3220-3221.

4

	Introduction
	Changes to ui.R when using ReportingTools
	Changes to server.R when using ReportingTools
	References

