Installation

To install and load NBAMSeq

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("NBAMSeq")
library(NBAMSeq)

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

## An example of countData
n = 50  ## n stands for number of genes
m = 20   ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)
      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1       5      73     211       1       1      21       4      29       2
gene2      94       2     406     321       1       1     927     188      56
gene3     122      19       4       4      13      92     147       9       3
gene4      30     133       1      40       4       1     252       1     109
gene5      60       1       5     179       1      58      14      14      94
gene6      83       1     490       3      37      69     225       2      11
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1        8      397      130        8      114        2        1        8
gene2      147        1       66       32        2      380        1      281
gene3      112      330        3        6       14        4        2       13
gene4        1        1        2      324      504       58      307        8
gene5       29        3        7       18       39       70      156        7
gene6        3        1       51       57       49        2       36        9
      sample18 sample19 sample20
gene1        3      245       76
gene2        1       62      120
gene3       14        1       81
gene4      112      112        4
gene5        1      265       38
gene6       12      372        3

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
    var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)
           pheno        var1        var2       var3 var4
sample1 26.61320 -0.87991740  1.30022139  0.7591436    0
sample2 50.46816 -0.58531533  0.38352668 -1.4390917    2
sample3 27.22425 -0.34183604  1.05833006  0.2887099    0
sample4 23.86635 -0.78617637 -2.74945847  0.7555255    2
sample5 22.60160  0.02654447  0.04689304  1.2074754    1
sample6 34.10561  0.18027857 -0.97000841 -0.5046642    1

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

design = ~ s(pheno) + var1 + var2 + var3 + var4

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

gsd = NBAMSeqDataSet(countData = countData, colData = colData, design = design)
gsd
class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

gsd = NBAMSeq(gsd)

Several other arguments in NBAMSeq function are available for users to customize the analysis.

library(BiocParallel)
gsd = NBAMSeq(gsd, parallel = TRUE)

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

res1 = results(gsd, name = "pheno")
head(res1)
DataFrame with 6 rows and 7 columns
       baseMean       edf      stat    pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   60.2456   1.00008 0.0338331  0.854154  0.978178   205.681   212.651
gene2  117.2252   1.00076 0.6142221  0.434159  0.657817   232.413   239.384
gene3   41.7175   1.00010 0.0199017  0.888032  0.978178   195.048   202.019
gene4   82.9041   1.00006 2.0529531  0.151933  0.544674   210.312   217.282
gene5   38.0813   1.00007 1.2487526  0.263817  0.544674   201.331   208.301
gene6   60.6378   1.00010 1.9720928  0.160274  0.544674   202.123   209.094

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

res2 = results(gsd, name = "var1")
head(res2)
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat      pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric>   <numeric> <numeric> <numeric>
gene1   60.2456 -0.244169  0.462634 -0.527780 0.597652067 0.7470651   205.681
gene2  117.2252  0.613154  0.458428  1.337513 0.181055403 0.3848923   232.413
gene3   41.7175  0.839487  0.392062  2.141211 0.032257029 0.2016064   195.048
gene4   82.9041 -1.520444  0.444982 -3.416863 0.000633472 0.0223685   210.312
gene5   38.0813 -0.308562  0.377336 -0.817738 0.413506860 0.5907241   201.331
gene6   60.6378 -0.539059  0.413594 -1.303354 0.192454024 0.3848923   202.123
            BIC
      <numeric>
gene1   212.651
gene2   239.384
gene3   202.019
gene4   217.282
gene5   208.301
gene6   209.094

For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

res3 = results(gsd, contrast = c("var4", "2", "0"))
head(res3)
DataFrame with 6 rows and 8 columns
       baseMean       coef        SE       stat    pvalue      padj       AIC
      <numeric>  <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene1   60.2456 -0.8003810  1.010147 -0.7923408 0.4281620  0.898202   205.681
gene2  117.2252 -1.4262200  0.996559 -1.4311443 0.1523889  0.634954   232.413
gene3   41.7175 -0.0106729  0.858454 -0.0124327 0.9900804  0.993753   195.048
gene4   82.9041 -0.4731953  0.926044 -0.5109859 0.6093610  0.952126   210.312
gene5   38.0813 -0.7132697  0.818456 -0.8714820 0.3834911  0.898202   201.331
gene6   60.6378 -2.1074616  0.878809 -2.3980877 0.0164809  0.206011   202.123
            BIC
      <numeric>
gene1   212.651
gene2   239.384
gene3   202.019
gene4   217.282
gene5   208.301
gene6   209.094

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

## assuming we are interested in the nonlinear relationship between gene10's 
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]  
sf = getsf(gsd)  ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf) 
head(res1)
DataFrame with 6 rows and 7 columns
        baseMean       edf      stat     pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene11  118.1638   1.00010   6.73250 0.00947325  0.209200   223.214   230.184
gene12   49.9469   1.00010   6.40016 0.01142031  0.209200   204.402   211.373
gene38   34.1588   1.00005   6.23157 0.01255200  0.209200   178.839   185.809
gene27   53.0171   1.00007   5.13647 0.02343362  0.244152   201.422   208.392
gene42  104.1530   1.00004   5.06539 0.02441516  0.244152   229.687   236.657
gene26   73.6163   1.00003   4.51399 0.03362624  0.280219   206.450   213.420
library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
    geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
    annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1, 
    label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
    ggtitle(setTitle)+
    theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))

Session info

sessionInfo()
R version 4.5.0 RC (2025-04-04 r88126)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggplot2_3.5.2               BiocParallel_1.42.0        
 [3] NBAMSeq_1.24.1              SummarizedExperiment_1.38.1
 [5] Biobase_2.68.0              GenomicRanges_1.60.0       
 [7] GenomeInfoDb_1.44.0         IRanges_2.42.0             
 [9] S4Vectors_0.46.0            BiocGenerics_0.54.0        
[11] generics_0.1.4              MatrixGenerics_1.20.0      
[13] matrixStats_1.5.0          

loaded via a namespace (and not attached):
 [1] KEGGREST_1.48.0         gtable_0.3.6            xfun_0.52              
 [4] bslib_0.9.0             lattice_0.22-7          vctrs_0.6.5            
 [7] tools_4.5.0             parallel_4.5.0          tibble_3.2.1           
[10] AnnotationDbi_1.70.0    RSQLite_2.3.11          blob_1.2.4             
[13] pkgconfig_2.0.3         Matrix_1.7-3            RColorBrewer_1.1-3     
[16] lifecycle_1.0.4         GenomeInfoDbData_1.2.14 compiler_4.5.0         
[19] farver_2.1.2            Biostrings_2.76.0       DESeq2_1.48.1          
[22] codetools_0.2-20        htmltools_0.5.8.1       sass_0.4.10            
[25] yaml_2.3.10             pillar_1.10.2           crayon_1.5.3           
[28] jquerylib_0.1.4         DelayedArray_0.34.1     cachem_1.1.0           
[31] abind_1.4-8             nlme_3.1-168            genefilter_1.90.0      
[34] tidyselect_1.2.1        locfit_1.5-9.12         digest_0.6.37          
[37] dplyr_1.1.4             labeling_0.4.3          splines_4.5.0          
[40] fastmap_1.2.0           grid_4.5.0              cli_3.6.5              
[43] SparseArray_1.8.0       magrittr_2.0.3          S4Arrays_1.8.0         
[46] survival_3.8-3          dichromat_2.0-0.1       XML_3.99-0.18          
[49] withr_3.0.2             scales_1.4.0            UCSC.utils_1.4.0       
[52] bit64_4.6.0-1           rmarkdown_2.29          XVector_0.48.0         
[55] httr_1.4.7              bit_4.6.0               png_0.1-8              
[58] memoise_2.0.1           evaluate_1.0.3          knitr_1.50             
[61] mgcv_1.9-3              rlang_1.1.6             Rcpp_1.0.14            
[64] xtable_1.8-4            glue_1.8.0              DBI_1.2.3              
[67] annotate_1.86.0         jsonlite_2.0.0          R6_2.6.1               

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.