
Package ‘iPAC’
May 8, 2024

Type Package

Title Identification of Protein Amino acid Clustering

Version 1.48.0

Date 2024-04-24

Author Gregory Ryslik, Hongyu Zhao

Maintainer Gregory Ryslik <gregory.ryslik@yale.edu>

Description iPAC is a novel tool to identify somatic amino acid
mutation clustering within proteins while taking into account
protein structure.

License GPL-2

Depends R(>= 2.15), scatterplot3d, Biostrings, pwalign, multtest

Imports grDevices, graphics, stats, gdata

biocViews Clustering, Proteomics

git_url https://git.bioconductor.org/packages/iPAC

git_branch RELEASE_3_19

git_last_commit af76098

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-08

Contents
iPAC-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ClusterFind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
get.AASeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
get.AlignedPositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
get.Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
get.Remapped.Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
get.SingleLetterCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
KRAS.Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



2 iPAC-package

nmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PIK3CA.Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Plot.Protein.Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Index 18

iPAC-package Identification of Protein Amino acid mutation Clustering

Description

This package finds mutation clusters on the amino acid level while taking into acount the protein
structure.

Details

The iPAC package finds clusters of non-synonomous amino acid mutations via a two step process.
First, iPAC links the amino acid positions in 3D space with their “canonical" ordering. The canon-
ical ordering is considered to be the sequence of amino acids when the protein is viewed in linear
form. Next, the canonical protein ordering is used to match the 3D positional information with
the mutation file. The mutation file is a matrix of 0’s (no mutation) and 1’s (mutation) where each
column represents an amino acid and each row represents an individual sample (test subject, cell
line, etc). Thus if column i in row j had a 1, that would mean that the ith amino acid for person j
had a nonsynonomous mutation. The last pre-processing step then maps the amino acids onto a 1D
space while preserving (as best as possible) local neighbor relationships. The NMC algorithm (see
Ye. et. al.) is then executed to identify the significant mutational clusters. Finally, the information
is mapped back into the original 3D space and reported back to the user.

Author(s)

Author: Gregory A. Ryslik, Hongyu Zhao

Maintainer: Gregory A. Ryslik <gregory.ryslik@yale.edu>

References

Ye et. al., Statistical method on nonrandom clustering with application to somatic mutations in
cancer. BMC Bioinformatics. 2010. doi:10.1186/1471-2105-11-11.

Bioconductor: Open software development for computational biology and bioinformatics R. Gen-
tleman, V. J. Carey, D. M. Bates, B.Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, and
others 2004, Genome Biology, Vol. 5, R80

Borg, I., Groenen, P. (2005). Modern Multidimensional Scaling: theory and applications (2nd ed.).
New York: Springer-Verlag.



ClusterFind 3

Examples

## Not run:
#Extract the data from a CIF file and match it up with the canonical protein sequence.
#Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.
CIF<-"https://files.rcsb.org/view/3GFT.cif"
Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.AlignedPositions(CIF,Fasta, "A")

#Load the mutational data for KRAS. Here the mutational data was obtained from the
#COSMIC database (version 58).
data(KRAS.Mutations)

#Identify and report the clusters.
ClusterFind(mutation.data=KRAS.Mutations,
position.data=KRAS.Positions$Positions,
create.map = "Y",Show.Graph = "Y")

## End(Not run)

ClusterFind ClusterFind

Description

ClusterFind is the main method of the iPAC package. It identifies clusters of mutated amino acids
while taking into account the protein structure.

Usage

ClusterFind(mutation.data, position.data, method = "MDS", alpha = 0.05,
MultComp = "Bonferroni", Include.Culled = "Y", Include.Full = "Y",
create.map = "Y", Show.Graph = "Y", Graph.Output.Path = NULL,
Graph.File.Name = "Map.pdf", Graph.Title = "Mapping",
OriginX = min(position.data[, 4]), OriginY = min(position.data[, 5]),
OriginZ = min(position.data[, 6]))

Arguments

mutation.data A matrix of 0’s (no mutation) and 1’s (mutation) where each column represents
an amino acid in the protein and each row represents an individual sample (test
subject, cell line, etc). Thus if column i in row j had a 1, that would mean that
the ith amino acid for person j had a nonsynonomous mutation.

position.data A dataframe consisting of five columns: 1) Residue Name, 2) Amino Acid num-
ber in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6) Z-
coordinate. Please see get.Positions and get.AlignedPositions for further infor-
mation on how to construct this matrix.



4 ClusterFind

method You can select whether you want a "MDS" or "Linear" approach in order to map
the protein into a 1D space.

alpha The significance level used in the NMC calculation. Please see Ye. et. al. for
more information.

MultComp The multiple comparisons adjustment used in the NMC calculation. Possible
options are "None", "Bonferroni" and "BH". Please see Ye. et. al. for more
information.

Include.Culled If "Y", the standard NMC algorithm will be run on the protein after removing
the amino acids for which there is no positional data.

Include.Full If "Y", the standard NMC algorithm will be run on the full protein sequence.

create.map If "Y", a graphical representation of the the dimension reduction from 3D to 1D
space will be created (though not necessarily displayed).

Show.Graph If "Y", the graph representation will be displayed. Warning: You must be run-
ning R in a GUI environment, otherwise, an error will occur.

Graph.Output.Path

If you would like the picture saved atomatically to the disk, specify the output
directory here. The Graph.File.Name variable must be set as well.

Graph.File.Name

If you would like the picture saved automatically to the disk, specify the output
file name. The Graph.Output.Path variable must be set as well.

Graph.Title The title of the graph to be created.

OriginX If the "Linear" method is chosen, this specifies the x-coordinate part of the fixed
point.

OriginY If the "Linear" method is chosen, this specifies the y-coordinate part of the fixed
point.

OriginZ If the "Linear" method is chosen, this specifies the z-coordinate part of the fixed
point.

Details

The linear method fixes a point, defined by the parameters OriginX, OriginY, OriginZ, and then
calculates the distance from each amino acid to that point. The graph produced by ClusterFind
(if requested), shows these distances as dotted green lines. The length of the green line is used to
reorder the protein, with the amino acid that corresponds to the shortest green line being ordered
first and the amino acid corresponding to the longest green line being ordered last.

Additional methods will be available in future versions of this package.

Value

Remapped This shows the clusters found while taking the 3D structure into account.

OriginalCulled This shows the clusters found if you run the NMC algorithm on the canonical
linear protein, but with the amino acids for which we don’t have 3D positional
data removed.

Original This shows the clusters found if you run the NMC algorithn on the canonical
linear protein with all the amino acids.



ClusterFind 5

MissingPositions

This shows which amino acids are present in the mutation matrix but for which
we do not have positions. These amino acids are cut from the protein when
calculating the Remapped and OriginalCulled results.

Note

If no significant clusters are found, a "NULL" will be returned for the appropriate section (Remapped,
OriginalCulled, or Original).

If you want the graph to just display on a new R graphics devices without saving it to the disk,
simply set the Graph.Output.Path or the Graph.File.Name parameters to be NULL while leaving
both the create.map and the Show.Graph parameters to be "Y".

If you are running this algorithm on a terminal with no GUI (such as a computational cluster), set
Show.Graph to "N" as R will not be able to open a new graphics device. However, you can still
have the graphics saved for later viewing by setting the Graph.Output.Path and Graph.File.Name
variables.

If ClusterFind displays the message "Error in 0:(n - j) : NA/NaN argument", this most likely sig-
nifies that after removing the amino acids for which there is no positional data, the mutation data
matrix is all 0’s. For instance, if all the mutations occured on the 5th amino acid in the protein, and
we did not have 3D positional information for that amino acid, the mutation data for the remaining
positions would be all 0’s. An error message in this situation will be displayed in the results section
as well. In such cases, the user should run the original NMC algorithm only (see nmc) or select an
alternative protein structure.

When unmapping back to the original space, the end points of the cluster in the mapped space are
used as the endpoints of the cluster in the unmapped space.

References

Ye et. al., Statistical method on nonrandom clustering with application to somatic mutations in
cancer. BMC Bioinformatics. 2010. doi:10.1186/1471-2105-11-11.

Examples

#Extract the data from a CIF file and match it up with the canonical protein sequence.
#Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.
CIF<-"https://files.rcsb.org/view/3GFT.cif"
Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")

#Load the mutational data for KRAS. Here the mutational data was obtained from the
#COSMIC database (version 58).
data(KRAS.Mutations)

#Identify and report the clusters using the default MDS method.
ClusterFind(mutation.data=KRAS.Mutations,
position.data=KRAS.Positions$Positions,
create.map = "Y",Show.Graph = "Y")

#Identify and report the clusters using the linear method.



6 get.AlignedPositions

ClusterFind(mutation.data=KRAS.Mutations,
position.data=KRAS.Positions$Positions,
create.map = "Y",Show.Graph = "Y", method = "Linear")

get.AASeq get.AASeq

Description

Reads a FASTA (or similarly formatted) file and returns all the amino acids as a list.

Usage

get.AASeq(filelocation)

Arguments

filelocation The location of the file being read.

Details

The first line in the file being processed must begin with a ">". If the ending character in the file is
a "*" (indicating a terminator – as is common in the COSMIC database), this character is excluded
from the sequence as well.

Value

An ordered list of amino acids in the protein. Each element of the list represents an amino acid.

Examples

#Reads the amino acid sequence for KRAS from Uniprot
get.AASeq("https://www.uniprot.org/uniprot/P01116-2.fasta")

get.AlignedPositions get.AlignedPositions

Description

This function reads a CIF file to extract the names and (x,y,z) coordinates of each residue. It then
performs a pairwise alignment to convert the amino acid ordering in the CIF file to the canonical
ordering specified by the FASTA file. The first element in the returned list, $Positions, is the
positions matrix required by the ClusterFind method.



get.AlignedPositions 7

Usage

get.AlignedPositions(CIF.File.Location, Fasta.File.Location, chain.required = "A",
RequiredModelNum = NULL, patternQuality = PhredQuality(22L),
subjectQuality = PhredQuality(22L), type = "global-local",
substitutionMatrix = NULL, fuzzyMatrix = NULL, gapOpening = -10,
gapExtension = -4, scoreOnly = FALSE)

Arguments

CIF.File.Location

The location of the CIF file to be read.
Fasta.File.Location

The location of the FASTA (or FASTA-like) file to be read.

chain.required The side chain in the protein from which to extract positions in the CIF file.
RequiredModelNum

The required model num to extract positions from in the CIF file. If the Re-
quiredModelNum == NULL, the method will use the first model number found
in the file.

patternQuality The patternQuality parameter in the pairwiseAlignment function in the pwalign
package.

subjectQuality The subjectQuality parameter in the pairwiseAlignment function in the pwalign
package.

type The type parameter in the pairwiseAlignment function in the pwalign package.
This should NOT be changed from "global-local" as we use the canonical protein
from the FASTA file as the global pattern and the extracted positions from the
CIF as the subject pattern. We then attempt to align parts of the subject pattern
to the entire global pattern.

substitutionMatrix

The substitutionMatrix parameter in the pairwiseAlignment function in the pwalign
package.

fuzzyMatrix The fuzzyMatrix parameter in the pairwiseAlignment function in the pwalign
package.

gapOpening The gapOpening parameter in the pairwiseAlignment function in the pwalign
package.

gapExtension The gapExtension parameter in the pairwiseAlignment function in the pwalign
package.

scoreOnly The scoreOnly parameter in the pairwiseAlignment function in the pwalign
package.

Details

This method is currently in BETA and is provided only as a convenient way to extract the required
3D positional information from a CIF file. Currently, CIF (and PDB) files can have a number
of deviations from the canonical protein sequence including additional, missing and mismatched
amino acids. The amino acid numbering in CIF files can also be different from the canonical



8 get.AlignedPositions

protein. This makes it difficult to match up mutational data (from sources such as COSMIC) to 3D
positional data (from sources such as the PDB) and necessitates the use of this function.

This method extracts the canonical amino acid sequence from the file at Fasta.File.Location. It
then attempts to align the amino acids extracted from the CIF file to the canonical sequence using
the pairwiseAlignment function in the package pwalign that is available on Bioconductor. After
alignment, any amino acids that are mismatched between the canonical sequence and the extracted
sequence are automatically removed so that the ClusterFind method, which requires positional data
as input, is only run on those amino acids which are correctly matched.

Value

Positions A dataframe that shows the extracted amino acids, their numerical position in
the protein order, the protein side chain being used and the amino acid positions
in 3D space.

Diff.Count A check that the amino acids remaining are in fact matched to the canonical
protein. This returns a count of the number of amino acids remaining that do
not match the canonical sequence and should be 0 if a successful alignment
occurred.

Diff.Positions A description of the mismatched amino acids if any were found. If a succesful
alignment occurred, this will be NULL.

Alignment.Result

The raw alignment result returned by the pairwiseAlignment method in the
pwalign package.

Result The final status of the alignment. If it is "OK", that means that this alignment
appears to be ok. If the alignment failed, this item will contain an error message.

Note

This function is provided as a convenience to the user so that they may easily obtain the required
input for the ClusterFind function. The user should validate the results.

The "Diff.Count" and "Diff.Positions" parts of the returned value should always be "0" and "NULL"
if the positions were successfully extracted as mismatched positions are dropped automatically.
This behavior is different from the get.Positions function where a reconciliation of differences is
attempted using the information within the CIF file.

If you would like to contribute to this function, please contact the author.

References

Biostrings Package. Bioconductor: Open software development for computational biology and
bioinformatics R. Gentleman, V. J. Carey, D. M. Bates, B.Bolstad, M. Dettling, S. Dudoit, B. Ellis,
L. Gautier, Y. Ge, and others 2004, Genome Biology, Vol. 5, R80

Examples

#Observe that position 61 is missing. It is atuomatically dropped as the pdb data
#specifies it as a "H" while the FASTA sequence specifies it as "Q".
CIF<-"https://files.rcsb.org/view/3GFT.cif"
Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"



get.Positions 9

get.AlignedPositions(CIF,Fasta, "A")

get.Positions get.Positions

Description

This function reads a CIF file to extract the names and (x,y,z) coordinates of each residue. Then,
the information within the CIF file itself is used to identify the canonical position for each amino
acid.

Usage

get.Positions(CIF.File.Location, Fasta.File.Location, chain.required = "A",
RequiredModelNum = NULL)

Arguments

CIF.File.Location

The location of the CIF file to be read.
Fasta.File.Location

The location of the FASTA (or FASTA-like) file to be read.

chain.required The side chain in the protein from which to extract positions in the CIF file.
RequiredModelNum

The required model num to extract positions from in the CIF file. If the Re-
quiredModelNum == NULL, the method will use the first model number found
in the file.

Details

This algorithm attempts to recreate the canonical sequence by considering 3 seperate parts of a
CIF file. The first part, the "_pdbx_poly_seq_scheme" section corresponds to the SEQRES entries
in PDB files and lists all the amino acid residues in the protein that were studied including those
that were not included in the 3D structure. The second part, the "struct_ref_seq" section, links the
Uniprot (which provides the canonical sequence), PDB and internal CIF amino acid numbering
schemes. Finally, the "_atom_site" section provides the (x,y,z) positional information. All three
parts are tied together via a "seq_id" numerical identifier. It is thus possible to use the numbering
scheme map provided in the "struct_ref_seq" section to calculate the canonical numbering for the
residues listed in the "_pdbx_poly_seq_scheme" and then finally match them up to the residues
listed in the "_atom_site" section.

Value

Positions A dataframe that shows the amino acids extracted, their position in protein or-
dering, the side chain and their position in 3D space.

External.Mismatch

This shows the mismatches that were found between the amino acids extracted
from the file and the canonical sequence in the FASTA file.



10 get.Positions

PDB.Mismatch This shows the mismatches that are known to exist using only the information
available in the CIF file.

Result The final status of extracting the amino acid sequence. It will either display
"OK" or an error message.

Note

Due to the complexity of CIF file, this function is only able to account for a subset of the structures
in the PDB database. If this function fails, consider using the the get.AlignedPositions function.

If you would like to contribute to this function, please contact the author.

Examples

###################################################
#Observe that the final result from the code below is "OK". That is because the only
#mismatched residue at position 61, was documented in the CIF file as well.
#Thus it is considered a "reconciled" mismatch. It is up to the user to decide if
#they want to include it in the position sequence or remove it.

CIF<-"https://files.rcsb.org/view/3GFT.cif"
Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.extracted.positions<- get.Positions(CIF, Fasta, "A")
###################################################

###################################################
#Observe that the final result from the code below is "FAILURE". For PIK3CA there were
#10 mismatched residues between the CIF file and the canonical sequence.
#However, none of these residues are explained within the actual CIF file.

CIF<- "https://files.rcsb.org/view/2RD0.cif"
Fasta<-"https://cancer.sanger.ac.uk/cosmic/sequence?width=700&ln=PIK3CA&type=protein&height=500"
PIK3CA.extracted.positions<- get.Positions(CIF,Fasta , "A")
###################################################

###################################################
#Observe that the final result from the code below is "OK". Here we use a different file
#location for the canonical sequence -- the UNIPROT database. The canonical sequence is slightly
#different and matches up exactly to the extracted positions. As there is only 1 isoform listed
#on UNIPROT for PIK3CA we suggest that users obtain the mutational data and the canonical
#sequence information from the same source. For example, if your mutation data was obtained from
#COSMIC, you should use COSMIC to get the canonical protein sequence.

CIF <- "https://files.rcsb.org/view/2RD0.cif"
Fasta <- "https://www.uniprot.org/uniprot/P42336.fasta"
PIK3CA.extracted.positions<- get.Positions(CIF, Fasta, "A")
###################################################



get.Remapped.Order 11

get.Remapped.Order get.Remapped.Order

Description

get.Remapped.Order returns the reordering of the culled mutation matrix using the remapper of
choice (linear vs MDS).

Usage

get.Remapped.Order(mutation.data, position.data, method = "MDS", OriginX = min(position.data[,4]), OriginY=min(position.data[,5]), OriginZ=min(position.data[,6]))

Arguments

mutation.data A matrix of 0’s (no mutation) and 1’s (mutation) where each column represents
an amino acid in the protein and each row represents an individual sample (test
subject, cell line, etc). Thus if column i in row j had a 1, that would mean that
the ith amino acid for person j had a nonsynonomous mutation.

position.data A dataframe consisting of five columns: 1) Residue Name, 2) Amino Acid num-
ber in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6) Z-
coordinate. Please see get.Positions and get.AlignedPositions for further infor-
mation on how to construct this matrix.

method You can select whether you want a "MDS" or "Linear" approach in order to map
the protein into a 1D space.

OriginX If the "Linear" method is chosen, this specifies the x-coordinate part of the fixed
point.

OriginY If the "Linear" method is chosen, this specifies the y-coordinate part of the fixed
point.

OriginZ If the "Linear" method is chosen, this specifies the z-coordinate part of the fixed
point.

Details

The culled mutation matrix is the mutation matrix after the amino acids that have missing positional
data have been removed. The amino acid positions that have missing positional data will not be
displayed in the result.

Note

The returned value shows the remapped order of the culled mutation matrix.

This method is still in beta. If any bugs found, please email the package authors.



12 get.SingleLetterCode

Examples

#Extract the data from a CIF file and match it up with the canonical protein sequence.
#Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.
CIF<-"https://files.rcsb.org/view/3GFT.cif"
Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.AlignedPositions(CIF,Fasta, "A")

#Load the mutational data for KRAS. Here the mutational data was obtained from the
#COSMIC database (version 58).
data(KRAS.Mutations)

#Show the remapped order using the MDS remapper.
get.Remapped.Order(KRAS.Mutations, KRAS.Positions$Positions)

#Show the remapped order using the Linear remapper. Note that Amino Acid 61 is missing
#if get.AlignedPositions was used. Thus Amino Acid 61 is missing in the returned result.
get.Remapped.Order(KRAS.Mutations, KRAS.Positions$Positions, method = "Linear")

get.SingleLetterCode get.SingleLetterCode

Description

This function takes in the 3 letter amino acid representation and returns the 1 letter representation.

Usage

get.SingleLetterCode(code)

Arguments

code The 3 letter code in all capital letters.

Details

If the 3 letter code is not found (either because it does not exist or because it is not in all capital
letters), an "X" is returned.

This function is used as a helper function of get.AlignedPositions and get.Positions. It is not nec-
essary to invoke it independently and we include it here solely as a matter of convenience for the
user.

Value

An amino acid single letter code returned as a string. The string will be an element in:

{"P","A","V","L","I","M","C","F","Y","W","H","K","R","Q","N","E","D","S","T","X"}.



KRAS.Mutations 13

Examples

get.SingleLetterCode("MET")

get.SingleLetterCode("GLN")

get.SingleLetterCode("gln")

get.SingleLetterCode("DMY")

KRAS.Mutations KRAS.Mutations

Description

A matrix of the verified somatic mutations for KRAS from the COSMIC database.

Usage

data(KRAS.Mutations)

Format

There are 149 rows, each representing a different sample and 188 colums – one for each amino acid
in the protein.

Source

Version 58 of the cosmic database was used.

References

S A Forbes, G Bhamra, S Bamford, E Dawson, C Kok, J Clements, A Menzies, J W Teague, P
A Futreal, and M R Stratton. The catalogue of somatic mutations in cancer (COSMIC). Current
Protocols in Human Genetics / Editorial Board, Jonathan L. Haines ... [et Al.], Chapter 10:Unit
10.11, April 2008. ISSN 1934-8258. doi: 10.1002/0471142905.hg1011s57.

URL http://www.ncbi.nlm.nih.gov/pubmed/18428421. PMID: 18428421.

Examples

data(KRAS.Mutations)

#Show the first 10 samples
KRAS.Mutations[1:10,]

#Show which samples had position 12 mutated
KRAS.Mutations[,12]



14 nmc

nmc nmc

Description

This runs the clustering algorithm developed by Ye. et. al on the original linear protein.

Usage

nmc(x, alpha = 0.05, multtest = c("Bonferroni", "BH", "None"))

Arguments

x x is a matrix of 0’s and 1’s. Each column represents a sample (cell-line, individ-
ual, etc.) while each column represents an amino acid in the protein. The i-th
column represents the i-th amino acid.

alpha The significance level to be used.

multtest The type of multiple comparisons adjustment to be used.

Value

Returns a matrix of results which include the starting and ending positions of the clusters along with
a p-value for each cluster.

Note

Please see the original paper and methodology for a more detailed description of each of the param-
eters to this function.

References

Ye et. al., Statistical method on nonrandom clustering with application to somatic mutations in
cancer. BMC Bioinformatics. 2010. doi:10.1186/1471-2105-11-11.

Examples

data(KRAS.Mutations)
nmc(KRAS.Mutations, alpha = 0.05, multtest = "Bonferroni")



PIK3CA.Mutations 15

PIK3CA.Mutations PIK3CA.Mutations

Description

A matrix of the verified somatic mutations for PIK3CA from COSMIC.

Usage

data(PIK3CA.Mutations)

Format

There are 96 rows, each representing a sample mutation and 1068 colums – one for each amino acid
in the protein.

Source

Version 58 of the cosmic database was used.

References

S A Forbes, G Bhamra, S Bamford, E Dawson, C Kok, J Clements, A Menzies, J W Teague, P
A Futreal, and M R Stratton. The catalogue of somatic mutations in cancer (COSMIC). Current
Protocols in Human Genetics / Editorial Board, Jonathan L. Haines ... [et Al.], Chapter 10:Unit
10.11, April 2008. ISSN 1934-8258. doi: 10.1002/0471142905.hg1011s57.

URL http://www.ncbi.nlm.nih.gov/pubmed/18428421. PMID: 18428421.

Examples

data(PIK3CA.Mutations)

#Show the first 10 samples
PIK3CA.Mutations[1:10,]

#Show which samples had position 1047 mutated
PIK3CA.Mutations[,1047]



16 Plot.Protein.Linear

Plot.Protein.Linear Plot.Protein.Linear

Description

Plot.Protein.Linear creates a visual representation of the protein reordering by showing the protein
in linear form and setting the color based upon the remapped amino acid position.

Usage

Plot.Protein.Linear(path, colCount, cex=0.5, height = 1,width = 1,
title = "Protein Reordering", color.palette = "heat")

Arguments

path The remapped protein using only those amino acids for which mutational data
is available.

colCount How many columns you want in the plot

cex How large you want the text to be. See R graphical parameters for more infor-
mation.

height The height of the resulting box that outlines the amino acid number.

width The width of the resulting box that outlines the amino acid number.

title The title that you want the graph to display.

color.palette One of of the standard color palettes available in R. The options are "heat",
"gray", "topo", and "cm".

Details

The terminal you are running this on must be able to create an R graphical device.

Note

This method is still in beta. If any bugs found, please email the package authors.

Examples

#Extract the data from a CIF file and match it up with the canonical protein sequence.
#Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.
CIF<-"https://files.rcsb.org/view/3GFT.cif"
Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions(CIF,Fasta, "A")

#Load the mutational data for KRAS. Here the mutational data was obtained from the
#COSMIC database (version 58).
data(KRAS.Mutations)

#Show the remapped order using the MDS remapper.



Plot.Protein.Linear 17

new.ordering<-get.Remapped.Order(KRAS.Mutations, KRAS.Positions$Positions)

#Create the Plots. Note that Amino Acid 61 is missing if get.AlignedPositions
#was used. Thus Amino Acid 61 is missing in the plots below.
Plot.Protein.Linear(new.ordering, 25, color.palette = "heat")
Plot.Protein.Linear(new.ordering, 25, color.palette = "gray")



Index

∗ Amino Acids
ClusterFind, 3
get.AASeq, 6
get.AlignedPositions, 6
get.Positions, 9
get.Remapped.Order, 11
get.SingleLetterCode, 12
Plot.Protein.Linear, 16

∗ CIF
get.AlignedPositions, 6
get.Positions, 9

∗ Clusters
ClusterFind, 3

∗ FASTA
get.AASeq, 6

∗ Mutations
ClusterFind, 3
get.Remapped.Order, 11
Plot.Protein.Linear, 16

∗ NMC
nmc, 14

∗ Order
get.Remapped.Order, 11
Plot.Protein.Linear, 16

∗ Positions
get.AlignedPositions, 6
get.Positions, 9

∗ datasets
KRAS.Mutations, 13
PIK3CA.Mutations, 15

∗ package
iPAC-package, 2

ClusterFind, 3

get.AASeq, 6
get.AlignedPositions, 6
get.Positions, 9
get.Remapped.Order, 11
get.SingleLetterCode, 12

iPAC (iPAC-package), 2
iPAC-package, 2

KRAS.Mutations, 13

nmc, 14

PIK3CA.Mutations, 15
Plot.Protein.Linear, 16

18


	iPAC-package
	ClusterFind
	get.AASeq
	get.AlignedPositions
	get.Positions
	get.Remapped.Order
	get.SingleLetterCode
	KRAS.Mutations
	nmc
	PIK3CA.Mutations
	Plot.Protein.Linear
	Index

