if (!require("BiocManager")) {
install.packages("BiocManager")
}
BiocManager::install("glmSparseNet")
library(dplyr)
library(ggplot2)
library(survival)
library(futile.logger)
library(curatedTCGAData)
library(TCGAutils)
library(MultiAssayExperiment)
#
library(glmSparseNet)
#
# Some general options for futile.logger the debugging package
flog.layout(layout.format("[~l] ~m"))
options(
"glmSparseNet.show_message" = FALSE,
"glmSparseNet.base_dir" = withr::local_tempdir()
)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())
The data is loaded from an online curated dataset downloaded from TCGA using
curatedTCGAData
bioconductor package and processed.
To accelerate the process we use a very reduced dataset down to 107 variables only (genes), which is stored as a data object in this package. However, the procedure to obtain the data manually is described in the following chunk.
skcm <- curatedTCGAData(
diseaseCode = "SKCM", assays = "RNASeq2GeneNorm",
version = "1.1.38", dry.run = FALSE
)
Build the survival data from the clinical columns.
xdata
and ydata
skcmMetastatic <- TCGAutils::TCGAsplitAssays(skcm, "06")
xdataRaw <- t(assay(skcmMetastatic[[1]]))
# Get survival information
ydataRaw <- colData(skcmMetastatic) |>
as.data.frame() |>
# Find max time between all days (ignoring missings)
dplyr::rowwise() |>
dplyr::mutate(
time = max(days_to_last_followup,
days_to_death,
na.rm = TRUE
)
) |>
# Keep only survival variables and codes
dplyr::select(patientID, status = vital_status, time) |>
# Discard individuals with survival time less or equal to 0
dplyr::filter(!is.na(time) & time > 0) |>
as.data.frame()
# Get survival information
ydataRaw <- colData(skcm) |>
as.data.frame() |>
# Find max time between all days (ignoring missings)
dplyr::filter(
!is.na(days_to_last_followup) | !is.na(days_to_death)
) |>
dplyr::rowwise() |>
dplyr::mutate(
time = max(days_to_last_followup, days_to_death, na.rm = TRUE)
) |>
# Keep only survival variables and codes
dplyr::select(patientID, status = vital_status, time) |>
# Discard individuals with survival time less or equal to 0
dplyr::filter(!is.na(time) & time > 0) |>
as.data.frame()
# Set index as the patientID
rownames(ydataRaw) <- ydataRaw$patientID
# keep only features that have standard deviation > 0
xdataRaw <- xdataRaw[
TCGAbarcode(rownames(xdataRaw)) %in% rownames(ydataRaw),
]
xdataRaw <- xdataRaw[, apply(xdataRaw, 2, sd) != 0] |>
scale()
# Order ydata the same as assay
ydataRaw <- ydataRaw[TCGAbarcode(rownames(xdataRaw)), ]
set.seed(params$seed)
smallSubset <- c(
"FOXL2", "KLHL5", "PCYT2", "SLC6A10P", "STRAP", "TMEM33",
"WT1-AS", sample(colnames(xdataRaw), 100)
)
xdata <- xdataRaw[, smallSubset[smallSubset %in% colnames(xdataRaw)]]
ydata <- ydataRaw |> dplyr::select(time, status)
Fit model model penalizing by the hubs using the cross-validation function by
cv.glmHub
.
fitted <- cv.glmHub(
xdata,
Surv(ydata$time, ydata$status),
family = "cox",
foldid = glmSparseNet:::balancedCvFolds(ydata$status)$output,
network = "correlation",
options = networkOptions(
cutoff = .6,
minDegree = .2
)
)
Shows the results of 100
different parameters used to find the optimal value
in 10-fold cross-validation. The two vertical dotted lines represent the best
model and a model with less variables selected (genes), but within a standard
error distance from the best.
plot(fitted)
Taking the best model described by lambda.min
coefsCV <- Filter(function(.x) .x != 0, coef(fitted, s = "lambda.min")[, 1])
data.frame(
ensembl.id = names(coefsCV),
gene.name = geneNames(names(coefsCV))$external_gene_name,
coefficient = coefsCV,
stringsAsFactors = FALSE
) |>
arrange(gene.name) |>
knitr::kable()
ensembl.id | gene.name | coefficient | |
---|---|---|---|
AMICA1 | AMICA1 | AMICA1 | -0.2758400 |
C4orf49 | C4orf49 | C4orf49 | -0.0059089 |
PCYT2 | PCYT2 | PCYT2 | 0.0646641 |
separate2GroupsCox(as.vector(coefsCV),
xdata[, names(coefsCV)],
ydata,
plotTitle = "Full dataset", legendOutside = FALSE
)
## $pvalue
## [1] 0.0001269853
##
## $plot
##
## $km
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
##
## n events median 0.95LCL 0.95UCL
## Low risk - 1 180 79 4000 2927 6164
## High risk - 1 179 114 2005 1524 2829
sessionInfo()
## R version 4.5.0 beta (2025-04-02 r88102)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] glmnet_4.1-8 VennDiagram_1.7.3
## [3] reshape2_1.4.4 forcats_1.0.0
## [5] Matrix_1.7-3 glmSparseNet_1.27.0
## [7] TCGAutils_1.29.0 curatedTCGAData_1.29.2
## [9] MultiAssayExperiment_1.35.0 SummarizedExperiment_1.39.0
## [11] Biobase_2.69.0 GenomicRanges_1.61.0
## [13] GenomeInfoDb_1.45.0 IRanges_2.43.0
## [15] S4Vectors_0.47.0 BiocGenerics_0.55.0
## [17] generics_0.1.3 MatrixGenerics_1.21.0
## [19] matrixStats_1.5.0 futile.logger_1.4.3
## [21] survival_3.8-3 ggplot2_3.5.2
## [23] dplyr_1.1.4 BiocStyle_2.37.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_2.0.0 shape_1.4.6.1
## [3] magrittr_2.0.3 magick_2.8.6
## [5] GenomicFeatures_1.61.0 farver_2.1.2
## [7] rmarkdown_2.29 BiocIO_1.19.0
## [9] vctrs_0.6.5 memoise_2.0.1
## [11] Rsamtools_2.25.0 RCurl_1.98-1.17
## [13] rstatix_0.7.2 tinytex_0.57
## [15] htmltools_0.5.8.1 S4Arrays_1.9.0
## [17] BiocBaseUtils_1.11.0 progress_1.2.3
## [19] AnnotationHub_3.17.0 lambda.r_1.2.4
## [21] curl_6.2.2 broom_1.0.8
## [23] Formula_1.2-5 pROC_1.18.5
## [25] SparseArray_1.9.0 sass_0.4.10
## [27] bslib_0.9.0 plyr_1.8.9
## [29] httr2_1.1.2 zoo_1.8-14
## [31] futile.options_1.0.1 cachem_1.1.0
## [33] GenomicAlignments_1.45.0 mime_0.13
## [35] lifecycle_1.0.4 iterators_1.0.14
## [37] pkgconfig_2.0.3 R6_2.6.1
## [39] fastmap_1.2.0 GenomeInfoDbData_1.2.14
## [41] digest_0.6.37 colorspace_2.1-1
## [43] AnnotationDbi_1.71.0 ps_1.9.1
## [45] ExperimentHub_2.17.0 RSQLite_2.3.9
## [47] ggpubr_0.6.0 labeling_0.4.3
## [49] filelock_1.0.3 km.ci_0.5-6
## [51] httr_1.4.7 abind_1.4-8
## [53] compiler_4.5.0 bit64_4.6.0-1
## [55] withr_3.0.2 backports_1.5.0
## [57] BiocParallel_1.43.0 carData_3.0-5
## [59] DBI_1.2.3 ggsignif_0.6.4
## [61] biomaRt_2.65.0 rappdirs_0.3.3
## [63] DelayedArray_0.35.0 rjson_0.2.23
## [65] tools_4.5.0 chromote_0.5.0
## [67] glue_1.8.0 restfulr_0.0.15
## [69] promises_1.3.2 checkmate_2.3.2
## [71] gtable_0.3.6 KMsurv_0.1-5
## [73] tzdb_0.5.0 tidyr_1.3.1
## [75] survminer_0.5.0 websocket_1.4.4
## [77] data.table_1.17.0 hms_1.1.3
## [79] car_3.1-3 xml2_1.3.8
## [81] XVector_0.49.0 BiocVersion_3.22.0
## [83] foreach_1.5.2 pillar_1.10.2
## [85] stringr_1.5.1 later_1.4.2
## [87] splines_4.5.0 BiocFileCache_2.17.0
## [89] lattice_0.22-7 rtracklayer_1.69.0
## [91] bit_4.6.0 tidyselect_1.2.1
## [93] Biostrings_2.77.0 knitr_1.50
## [95] gridExtra_2.3 bookdown_0.43
## [97] xfun_0.52 stringi_1.8.7
## [99] UCSC.utils_1.5.0 yaml_2.3.10
## [101] evaluate_1.0.3 codetools_0.2-20
## [103] tibble_3.2.1 BiocManager_1.30.25
## [105] cli_3.6.4 xtable_1.8-4
## [107] munsell_0.5.1 processx_3.8.6
## [109] jquerylib_0.1.4 survMisc_0.5.6
## [111] Rcpp_1.0.14 GenomicDataCommons_1.33.0
## [113] dbplyr_2.5.0 png_0.1-8
## [115] XML_3.99-0.18 readr_2.1.5
## [117] blob_1.2.4 prettyunits_1.2.0
## [119] bitops_1.0-9 scales_1.3.0
## [121] purrr_1.0.4 crayon_1.5.3
## [123] rlang_1.1.6 KEGGREST_1.49.0
## [125] rvest_1.0.4 formatR_1.14