Package ‘miloR’

December 31, 2024
Type Package

Title Differential neighbourhood abundance testing on a graph
Version 2.3.0

Description Milo performs single-cell differential abundance testing. Cell states are modelled
as representative neighbourhoods on a nearest neighbour graph. Hypothesis testing is per-
formed using either
a negative bionomial generalized linear model or negative binomial generalized lin-
ear mixed model.

License GPL-3 + file LICENSE
Encoding UTF-8

URL https://marionilab.github.io/miloR

BugReports https://github.com/MarioniLab/miloR/issues
biocViews SingleCell, MultipleComparison, FunctionalGenomics, Software
LinkingTo Rcpp, ReppArmadillo, ReppEigen, ReppML

Depends R (>=4.0.0), edgeR

Imports BiocNeighbors, BiocGenerics, SingleCellExperiment, Matrix (>=
1.3-0), MatrixGenerics, S4 Vectors, stats, stringr, methods,
igraph, irlba, utils, cowplot, BiocParallel, BiocSingular,
limma, ggplot2, tibble, matrixStats, ggraph, gtools,
SummarizedExperiment, patchwork, tidyr, dplyr, ggrepel,
ggbeeswarm, RColorBrewer, grDevices, Repp, pracma, numDeriv
Suggests testthat, mvtnorm, scater, scran, covr, knitr, rmarkdown,
uwot, scuttle, BiocStyle, MouseGastrulationData,
MouseThymusAgeing, magick, RCurl, MASS, curl, scRNAseq,
graphics, sparseMatrixStats

RoxygenNote 7.3.2
NeedsCompilation no

Collate 'AllClasses.R' 'AllGenerics.R' 'buildFromAdjacency.R’
'buildGraph.R' 'calcNhoodExpression.R' 'calcNhoodDistance.R'
'checkSeparation.R' 'countCells.R' 'findNhoodMarkers.R'
'graphSpatialFDR.R' 'glmm.R' 'makeNhoods.R' 'milo.R’

1


https://marionilab.github.io/miloR
https://github.com/MarioniLab/miloR/issues

'miloR-package.R' 'methods.R' 'plotNhoods.R' 'sim_discrete.R'
'sim_family.R' 'sim_nbglmm.R' 'sim_trajectory.R' 'testNhoods.R'
'testDiffExp.R' 'utils.R' 'buildNhoodGraph.R'

'annotateNhoods.R' 'groupNhoods.R' 'findNhoodGroupMarkers.R'
'ReppExports.R' 'miloR.R’

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/miloR
git_branch devel

git_last_commit 959804d

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-12-30

Author Mike Morgan [aut, cre] (ORCID: <https://orcid.org/0000-0003-0757-0711>),
Emma Dann [aut, ctb]

Maintainer Mike Morgan <michael.morgan@abdn.ac.uk>

Contents

miloR-package . . . . . .. ...
annotateNhoods . . . . . . . ... L
buildFromAdjacency . . . . . . . ... L
buildGraph . . . . . . . .
buildNhoodGraph . . . . . . . . . ...
calcNhoodDistance . . . . . . . . . . . .. L
calcNhoodExpression . . . . . . . . . . . . .
checkSeparation . . . . . . . . ... L.
computePvalue . . . . ... .o
countCells . . . . . . . . L
findNhoodGroupMarkers . . . . . . . . . . . . ... ...
findNhoodMarkers . . . . . . . .. . . ...
fitGeneticPLGImm . . . . . . . .. ...
fitGLMM . . . . o
fitPLGImm . . . . ..
glmmControl.defaults . . . . . . .. . ...
graphSpatialFDR . . . . . . . ...
groupNhoods . . . . . . . . oL
imitialiseG . . . . .. L.
initializeFullZ . . . . . . ..
makeNhoods . . . . . . . . L
MAtriXATACE . . . o v v v e e e e e e e e e e e e e
Milo-class . . . . . . . . e
Milo-methods . . . . . . . ...
miloR . . . . e
plotDAbeeswarm . . . . . .. ...
plotNhoodCounts . . . . . . . . . . . . e

Contents


https://orcid.org/0000-0003-0757-0711

miloR-package 3

plotNhoodExpressionDA . . . . . . . . . . ... 38
plotNhoodGraph . . . . . . . . . . e 40
plotNhoodGraphDA . . . . . . . . . . e 41
plotNhoodGroups . . . . . . . . . . . e 42
plotNhoodMA . . . . . . .. 43
plotNhoodSizeHist . . . . . . . . . . e 44
Satterthwaite_df . . . . . . . . . . 45
SIM_dISCIEE . . . . . . e e e e 46
sim_family . . . .. 47
sim_nbglmm . . . ... 47
SIM_trajectory . . . . . . . . . .. e e e 48
testDIffEXp . . . . . . e 49
testNhoods . . . . . . . e 51

Index 55

miloR-package The miloR package
Description

The miloR package provides modular functions to perform differential abundance testing on repli-
cated single-cell experiments. For details please see the vignettes vignette(”"milo_demo”, package="miloR")
and vignette("milo_gastrulation”, package="miloR").

Value

The miloR package

Author(s)

Mike Morgan & Emma Dann

annotateNhoods Add annotations from colData to DA testing results

Description

This function assigns a categorical label to neighbourhoods in the differential abundance results
data.frame (output of testNhoods), based on the most frequent label among cells in each neigh-
bourhood. This can be useful to stratify DA testing results by cell types or samples. Also the
fraction of cells carrying that label is stored.

Usage

annotateNhoods(x, da.res, coldata_col, subset.nhoods = NULL)
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Arguments
X A Milo object containing single-cell gene expression and neighbourhoods.
da.res A data. frame containing DA results, as expected from running testNhoods.
coldata_col A character scalar determining which column of colData(x) stores the annota-

tion to be added to the neighbourhoods

subset.nhoods A character, numeric or logical vector that will subset the annotation to the spe-
cific nhoods. If a character vector these should correspond to row names of
nhoodCounts. If a logical vector then these should have the same length as
nrow of nhoodCounts. If numeric, then these are assumed to correspond to in-
dices of nhoodCounts - if the maximal index is greater than nrow(nhoodCounts(x))
an error will be produced. This is necessary if testNhoods was run using
subset.nhoods=. ...

Details

For each neighbourhood, this calculates the most frequent value of colData(x)[coldata_col]
among cells in the neighbourhood and assigns that value as annotation for the neighbourhood,
adding a column in the da. res data.frame. In addition, a coldata_col_fraction column will be
added, storing the fraction of cells carrying the assigned label. While in practice neighbourhoods
are often homogeneous, one might choose to remove an annotation label when the fraction of cells
with the label is too low (e.g. below 0.6).

Value

A data. frame of model results (as da. res input) with two new columns: (1) coldata_col storing
the assigned label for each neighbourhood; (2) coldata_col_fraction storing the fraction of cells
in the neighbourhood with the assigned label.

Author(s)

Emma Dann

Examples

NULL

buildFromAdjacency Build a graph from an input adjacency matrix

Description

Construct a kNN-graph from an input adjacency matrix - either binary or distances between NNs.
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Arguments
X An n X n matrix of single-cells, where values represent edges between cells;
0 values are taken to mean no edge between cells. If the matrix is not binary,
then it is assumed the values are distances; O retain the same meaning. This
behaviour can be toggled using is.binary=TRUE.
k (optional) Scalar value that represents the number of nearest neighbours in the
original graph. This can also be inferred directly from the adjacency matrix x.
is.binary Logical scalar indicating if the input matrix is binary or not.
Details

This function will take a matrix as input and construct the kNN graph that it describes. If the matrix
is not symmetric then the graph is assumed to be directed, whereas if the matrix is not binary, i.e.
all 0’s and 1’s then the input values are taken to be distances between graph vertices; 0 values are
assumed to represent a lack of edge between vertices.

Value

A Milo with the graph slot populated.

Author(s)
Mike Morgan

Examples

r <- 1000
c <- 1000
k <- 35
m <- floor(matrix(runif(rxc), r, c))
for(i in seqg_along(1:r)){
m[i, sample(l:c, size=k)] <- 1
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milo <- buildFromAdjacency(m)

buildGraph Build a k-nearest neighbour graph

Description

This function is borrowed from the old buildKNNGraph function in scran. Instead of returning an
igraph object it populates the graph and distance slots in a Milo object. If the input is a Single-
CellExperiment object or a matrix then it will return a de novo Milo object with the same slots
filled.
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Usage
buildGraph(
X ’
k = 10,
d = 50,
transposed = FALSE,
get.distance = FALSE,
reduced.dim = "PCA",
BNPARAM = KmknnParam(),
BSPARAM = bsparam(),
BPPARAM = SerialParam()
)
Arguments
X A matrix, SingleCellExperiment or Milo object containing feature X cell gene
expression data.
k An integer scalar that specifies the number of nearest-neighbours to consider for
the graph building.
d The number of dimensions to use if the input is a matrix of cells X reduced
dimensions. If this is provided, transposed should also be set=TRUE.
transposed Logical if the input x is transposed with rows as cells.
get.distance A logical scalar whether to compute distances during graph construction.
reduced.dim A character scalar that refers to a specific entry in the reduceDim slot of the
Milo object.
BNPARAM refer to bui1dKNNGraph for details.
BSPARAM refer to buildKNNGraph for details.
BPPARAM refer to buildKNNGraph for details.
Details
This function computes a k-nearest neighbour graph. Each graph vertex is a single-cell connected by
the edges between its neighbours. Whilst a KNN-graph is strictly directed, we remove directionality
by forcing all edge weights to 1; this behaviour can be overriden by providing directed=TRUE.
If you wish to use an alternative graph structure, such as a shared-NN graph I recommend you
construct this separately and add to the relevant slot in the Milo object.
Value
A Milo object with the graph and distance slots populated.
Author(s)

Mike Morgan, with KNN code written by Aaron Lun & Jonathan Griffiths.
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Examples

library(SingleCellExperiment)

ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)

pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimplelList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, d=30, transposed=TRUE)

milo

buildNhoodGraph Build an abstracted graph of neighbourhoods for visualization

Description

Build an abstracted graph of neighbourhoods for visualization

Usage
buildNhoodGraph(x, overlap = 1)

Arguments
X A Milo object with a non-empty nhoods slot.
overlap A numeric scalar that thresholds graph edges based on the number of overlap-
ping cells between neighbourhoods.
Details

This constructs a weighted graph where nodes represent neighbourhoods and edges represent the
number of overlapping cells between two neighbourhoods.

Value

A Milo object containg an igraph graph in the nhoodGraph slot.

Author(s)

Emma Dann

Examples

NULL
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calcNhoodDistance

Calculate within neighbourhood distances

Description

This function will calculate Euclidean distances between single-cells in a neighbourhood using the
same dimensionality as was used to construct the graph. This step follows the makeNhoods call to
limit the number of distance calculations required.

Usage
calcNhoodDistance(x, d, reduced.dim = NULL, use.assay = "logcounts")
Arguments
X A Milo object with a valid graph slot. If reduced.dims is not provided and
there is no valid populated reducedDim slot in X, then this is computed first with
d + 1 principal components.
d The number of dimensions to use for computing within-neighbourhood dis-

reduced.dim

use.assay

Value

tances. This should be the same value used construct the graph.

If x is an Milo object, a character indicating the name of the reducedDim slot in
the Milo object to use as (default: "PCA’). Otherwise this should be an N X P
matrix with rows in the same order as the columns of the input Milo object x.

A character scalar defining which assay slot in the Milo to use

A Milo object with the distance slots populated.

Author(s)

Mike Morgan, Emma Dann

Examples

library(SingleCellExperiment)

ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)

pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),

milo <- Milo(sce)

reducedDims=SimplelList(PCA=pca$x))

milo <- buildGraph(milo, d=3@, transposed=TRUE)
milo <- makeNhoods(milo)
milo <- calcNhoodDistance(milo, d=30)

milo
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calcNhoodExpression Average expression within neighbourhoods

Description

This function calculates the mean expression of each feature in the Milo object stored in the assays
slot. Neighbourhood expression data are stored in a new slot nhoodExpression.

Usage
calcNhoodExpression(x, assay = "logcounts”, subset.row = NULL, exprs = NULL)
Arguments
X A Milo object with nhoods slot populated, alternatively a NxM indicator matrix
of N cells and M nhoods.
assay A character scalar that describes the assay slot to use for calculating neighbour-
hood expression.
subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.
exprs If x is a list of neighbourhoods, exprs is a matrix of genes X cells to use for
calculating neighbourhood expression.
Details

This function computes the mean expression of each gene, subset by subset.rows where present,
across the cells contained within each neighbourhood.

Value

A Milo object with the nhoodExpression slot populated.

Author(s)
Mike Morgan

Examples

require(SingleCellExperiment)

m <- matrix(rnorm(100000), ncol=100)

milo <- Milo(SingleCellExperiment(assays=list(logcounts=m)))
milo <- buildGraph(m, k=20, d=30)

milo <- makeNhoods(milo)

milo <- calcNhoodExpression(milo)

dim(nhoodExpression(milo))
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checkSeparation

Check for separation of count distributions by variables

Description

Check the count distributions for each nhood according to a test variable of interest. This is im-
portant for checking if there is separation in the GLMM to inform either nhood subsetting or re-
computation of the NN-graph and refined nhoods.

Arguments

X

design.df

condition

min.val

factor.check

Details

Milo object with a non-empty nhoodCounts slot.

A data.frame containing meta-data in which condition is a column vari-
able. The rownames must be the same as, or a subset of, the colnames of
nhoodCounts(x).

A character scalar of the test variable contained in design.df. This should be a
factor variable if it is numeric or character it will be cast to a factor variable.

A numeric scalar that sets the minimum number of counts across condition level
samples, below which separation is defined.

A logical scalar that sets the factor variable level checking. See details for more
information.

This function checks across nhoods for separation based on the separate levels of an input factor
variable. It checks if condition is a factor variable, and if not it will cast it to a factor. Note that the
function first checks for the number of unique values - if this exceeds > 50 error is generated. Users
can override this behaviour with factor.check=FALSE.

Value

A logical vector of the same length as ncol(nhoodCounts(x)) where TRUE values represent
nhoods where separation is detected. The output of this function can be used to subset nhood-based
analyses e.g. testNhoods(. .., subset.nhoods=checkSepartion(x, ...)).

Author(s)
Mike Morgan

Examples

library(SingleCellExperiment)

ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)

vx <- log2(ux + 1)

pca <- prcomp(t(vx))
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sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList (PCA=pca$x))

milo <- Milo(sce)

milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

milo <- calcNhoodDistance(milo, d=10)

cond <- rep("A", ncol(milo))

cond.a <- sample(1:ncol(milo), size=floor(ncol(milo)*@.25))

cond.b <- setdiff(1:ncol(milo), cond.a)

cond[cond.b] <- "B"

meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")

milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate”=rep(c(”"R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample

check.sep <- checkSeparation(milo, design.df=test.meta, condition='Condition")
sum(check. sep)

computePvalue Compute the p-value for the fixed effect parameters

Description

Based on the asymptotic t-distribution, comptue the 2-tailed p-value that estimate != 0. This func-
tion is not intended to be used directly, but is included for reference or if an alternative estimate of
the degrees of freedom is available.

Usage

computePvalue(Zscore, df)

Arguments
Zscore A numeric vector containing the Z scores for each fixed effect parameter
df A numeric vector containing the estimated degrees of freedom for each fixed
effect parameter
Details

Based on sampling from a 2-tailed t-distribution with df degrees of freedom, compute the proba-
bility that the calculated Zscore is greater than or equal to what would be expected from random
chance.
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Value

Numeric vector of p-values, 1 per fixed effect parameter

Author(s)
Mike Morgan & Alice Kluzer

Examples

NULL

countCells Count cells in neighbourhoods

Description

This function quantifies the number of cells in each neighbourhood according to an input experi-
mental design. This forms the basis for the differential neighbourhood abundance testing.

Usage

countCells(x, samples, meta.data = NULL)

Arguments
X A Milo object with non-empty graph and nhoods slots.
samples Either a string specifying which column of data should be used to identify the
experimental samples for counting, or a named vector of sample ids mapping
each single cell to it’s respective sample.
meta.data A cell X variable data. frame containing study meta-data including experimen-
tal sample IDs. Assumed to be in the same order as the cells in the input Milo
object.
Details

This function generates a counts matrix of nhoods X samples, and populates the nhoodCounts slot
of the input Milo object. This matrix is used down-stream for differential abundance testing.

Value

A Milo object containing a counts matrix in the nhoodCounts slot.

Author(s)

Mike Morgan, Emma Dann
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Examples

library(igraph)

m <- matrix(rnorm(100000), ncol=100)

milo <- buildGraph(t(m), k=20, d=10)

milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

cond <- rep("A"”, nrow(m))

cond.a <- sample(seqg_len(nrow(m)), size=floor(nrow(m)*@.25))

cond.b <- setdiff(seg_len(nrow(m)), cond.a)

cond[cond.b] <- "B"

meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 330), rep("R2", 330), rep("R3", 340)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")

milo <- countCells(milo, meta.data=meta.df, samples="SampID")

milo

findNhoodGroupMarkers Identify post-hoc neighbourhood marker genes

Description

This function will perform differential gene expression analysis on groups of neighbourhoods. Ad-
jacent and concordantly DA neighbourhoods can be defined using groupNhoods or by the user.
Cells between these aggregated groups are compared. For differential gene experession based on an
input design within DA neighbourhoods see testDiffExp.

Usage
findNhoodGroupMarkers(
X,
da.res,
assay = "logcounts”,

aggregate.samples = FALSE,
sample_col = NULL,
subset.row = NULL,
gene.offset = TRUE,
subset.nhoods = NULL,
subset.groups = NULL,

na.function = "na.pass”
)
Arguments
X A Milo object containing single-cell gene expression and neighbourhoods.
da.res A data. frame containing DA results, as expected from running testNhoods, as

a NhoodGroup column specifying the grouping of neighbourhoods, as expected
from



14 findNhoodGroupMarkers

assay A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

aggregate.samples
logical indicating wheather the expression values for cells in the same sample
and neighbourhood group should be merged for DGE testing. This allows to
perform testing exploiting the replication structure in the experimental design,
rather than treating single-cells as independent replicates. The function used for
aggregation depends on the selected gene expression assay: if assay="counts"
the expression values are summed, otherwise we take the mean.

sample_col a character scalar indicating the column in the colData storing sample informa-
tion (only relevant if aggregate. samples==TRUE)

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

gene.offset A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing (default: NULL).

subset.groups A character vector indicating which groups to test for markers (default: NULL)

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

Details

Using a one vs. all approach, each aggregated group of cells is compared to all others using the
single-cell log normalized gene expression with a GLM (for details see 1imma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
the latter it is recommended to set gene.of fset=TRUE as this behaviour adjusts the model offsets
by the number of detected genes in each cell.

Value

A data.frame of DGE results containing a log fold change and adjusted p-value for each aggre-
gated group of neighbourhoods. If return.groups then the return value is a list with the slots
groups and dge containing the aggregated neighbourhood groups per single-cell and marker gene
results, respectively.

Warning: If all neighbourhoods are grouped together, then it is impossible to run findNhoodMarkers.
In this (hopefully rare) instance, this function will return a warning and return NULL.

Examples

NULL
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Identify post-hoc neighbourhood marker genes

Description

This function will perform differential gene expression analysis on differentially abundant neigh-
bourhoods, by first aggregating adjacent and concordantly DA neighbourhoods, then comparing
cells between these aggregated groups. For differential gene experession based on an input design
within DA neighbourhoods see testDiffExp.

Arguments

X
da.res
da.fdr

assay

A Milo object containing single-cell gene expression and neighbourhoods.
A data. frame containing DA results, as expected from running testNhoods.

A numeric scalar that determines at what FDR neighbourhoods are declared DA
for the purposes of aggregating across concorantly DA neighbourhoods.

A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

aggregate.samples

sample_col

overlap

1fc.threshold

merge.discord

subset.row

gene.offset

return.groups

subset.nhoods

logical indicating wheather the expression values for cells in the same sample
and neighbourhood group should be merged for DGE testing. This allows to
perform testing exploiting the replication structure in the experimental design,
rather than treating single-cells as independent replicates. The function used for
aggregation depends on the selected gene expression assay: if assay="counts”
the expression values are summed, otherwise we take the mean.

a character scalar indicating the column in the colData storing sample informa-
tion (only relevant if aggregate.samples==TRUE)

A scalar integer that determines the number of cells that must overlap between
adjacent neighbourhoods for merging.

A scalar that determines the absolute log fold change above which neighbour-
hoods should be considerd "DA’ for merging. Default=NULL

A logical scalar that overrides the default behaviour and allows adjacent neigh-
bourhoods to be merged if they have discordant log fold change signs. Using
this argument is generally discouraged, but may be useful for constructing an
empirical null group of cells, regardless of DA sign.

A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

A logical scalar that returns a data. frame of the aggregated groups per single-
cell. Cells that are members of non-DA neighbourhoods contain NA values.

A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing.
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na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

compute.new A logical scalar indicating whether to force computing a new neighbourhood
adjacency matrix if already present.

Details

Louvain clustering is applied to the neighbourhood graph. This graph is first modified based on
two criteria: 1) neighbourhoods share at least overlap number of cells, and 2) the DA log fold
change sign is concordant. This behaviour can be modulated by setting overlap to be more or less
stringent. Additionally, a threshold on the log fold-changes can be set, such that 1fc.threshold
is required to retain edges between adjacent neighbourhoods. Note: adjacent neighbourhoods will
never be merged with opposite signs.

Using a one vs. all approach, each aggregated group of cells is compared to all others using the
single-cell log normalized gene expression with a GLM (for details see 1imma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
the latter it is recommended to set gene.of fset=TRUE as this behaviour adjusts the model offsets
by the number of detected genes in each cell.

Value

A data.frame of DGE results containing a log fold change and adjusted p-value for each aggre-
gated group of neighbourhoods. If return.groups then the return value is a list with the slots
groups and dge containing the aggregated neighbourhood groups per single-cell and marker gene
results, respectively.

Warning: If all neighbourhoods are grouped together, then it is impossible to run findNhoodMarkers.
In this (hopefully rare) instance, this function will return a warning and return NULL.

Author(s)
Mike Morgan & Emma Dann

Examples

library(SingleCellExperiment)

ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)

vx <- log2(ux + 1)

pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=1list(counts=ux, logcounts=vx),
reducedDims=SimplelList(PCA=pca$x))

colnames(sce) <- paste@(”Cell”, seq_len(ncol(sce)))

milo <- Milo(sce)

milo <- buildGraph(milo, k=20, d=10@, transposed=TRUE)

milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

milo <- calcNhoodDistance(milo, d=10)

cond <- rep("A", ncol(milo))
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cond.a <- sample(seq_len(ncol(milo)), size=floor(ncol(milo)*@.25))

cond.b <- setdiff(seg_len(ncol(milo)), cond.a)

cond[cond.b] <- "B"

meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")

milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate”=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")

rownames (test.meta) <- test.meta$Sample

da.res <- testNhoods(milo, design=~0 + Condition, design.df=test.metalcolnames(nhoodCounts(milo)), 1)

nhood.dge <- findNhoodMarkers(milo, da.res, overlap=1, compute.new=TRUE)

nhood.dge
fitGeneticPLGlmm GLMM parameter estimation using pseudo-likelihood with a custom
covariance matrix
Description

Iteratively estimate GLMM fixed and random effect parameters, and variance component parame-
ters using Fisher scoring based on the Pseudo-likelihood approximation to a Normal loglihood. This
function incorporates a user-defined covariance matrix, e.g. a kinship matrix for genetic analyses.

Usage
fitGeneticPLGIlmm(

muvec,
offsets,
curr_beta,
curr_theta,
curr_u,
curr_sigma,
curr_G,

Y,
u_indices,
theta_conv,
rlevels,
curr_disp,
REML ,
maxit,
solver,
vardist



Arguments

z
X
K

muvec
offsets
curr_beta
curr_theta
curr_u
curr_sigma
curr_G

y
u_indices

theta_conv
rlevels
curr_disp
REML

maxit

solver

vardist

Details

fitGeneticPLGImm

mat - sparse matrix that maps random effect variable levels to observations
mat - sparse matrix that maps fixed effect variables to observations

mat - sparse matrix that defines the known covariance patterns between indi-
vidual observations. For example, a kinship matrix will then adjust for the
known/estimated genetic relationships between observations.

vec vector of estimated phenotype means
vec vector of model offsets

vec vector of initial beta estimates

vec vector of initial parameter estimates
vec of initial u estimates

vec of initial sigma estimates

mat ¢ X ¢ matrix of variance components
vec of observed counts

List a List, each element contains the indices of Z relevant to each RE and all its
levels

double Convergence tolerance for paramter estimates

List containing mapping of RE variables to individual levels
double Dispersion parameter estimate

bool - use REML for variance component estimation

int maximum number of iterations if theta_conv is FALSE

string which solver to use - either HE (Haseman-Elston regression) or Fisher
scoring

string which variance form to use NB = negative binomial, P=Poisson [not yet
implemented]/

Fit a NB-GLMM to the counts provided in y. The model uses an iterative approach that switches
between the joint fixed and random effect parameter inference, and the variance component estima-
tion. A pseudo-likelihood approach is adopted to minimise the log-likelihood of the model given
the parameter estimates. The fixed and random effect parameters are estimated using Hendersons
mixed model equations, and the variance component parameters are then estimated with the speci-
fied solver, i.e. Fisher scoring, Haseman-Elston or constrained Haseman-Elston regression. As the
domain of the variance components is [0, +Inf], any negative variance component estimates will
trigger the switch to the HE-NNLS solver until the model converges.

Value

A list containing the following elements (note: return types are dictated by Rcpp, so the R types
are described here):

FE: numeric vector of fixed effect parameter estimates.
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RE: list of the same length as the number of random effect variables. Each slot contains the best
linear unbiased predictors (BLUPs) for the levels of the corresponding RE variable.

Sigma: numeric vector of variance component estimates, 1 per random effect variable. For this
model the last variance component corresponds to the input K matrix.

converged: logical scalar of whether the model has reached the convergence tolerance or not.
Iters: numeric scalar with the number of iterations that the model ran for. Is strictly <=max. i ter.
Dispersion: numeric scalar of the dispersion estimate computed off-line

Hessian: matrix of 2nd derivative elements from the fixed and random effect parameter inference.

SE: matrix of standard error estimates, derived from the hessian, i.e. the square roots of the
diagonal elements.

t: numeric vector containing the compute t-score for each fixed effect variable.
COEFF: matrix containing the coefficient matrix from the mixed model equations.
P: matrix containing the elements of the REML projection matrix.

Vpartial: list containing the partial derivatives of the (pseudo)variance matrix with respect to
each variance component.

Ginv: matrix of the inverse variance components broadcast to the full Z matrix.
Vsinv: matrix of the inverse pseudovariance.
Winv: matrix of the inverse elements of W = DA-1 V D/-1

VCOV: matrix of the variance-covariance for all model fixed and random effect variable parameter
estimates. This is required to compute the degrees of freedom for the fixed effect parameter
inference.

CONVLIST: list of list containing the parameter estimates and differences between current and
previous iteration estimates at each model iteration. These are included for each fixed effect,
random effect and variance component parameter. The list elements for each iteration are:
ThetaDiff, SigmaDiff, beta, u, sigma.

Author(s)
Mike Morgan

Examples

NULL

fitGLMM Perform differential abundance testing using a NB-generalised linear
mixed model

Description

This function will perform DA testing per-nhood using a negative binomial generalised linear mixed
model
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Usage

fitGLMM(
X,
zZ,
Y,
offsets,
init.theta = NULL,
Kin = NULL,
random.levels = NULL,
REML = FALSE,
glmm.control = list(theta.tol = 1e-06, max.iter = 100, init.sigma = NULL, init.beta =
NULL, init.u = NULL, solver = NULL),
dispersion = 1,
geno.only = FALSE,
intercept.type = "fixed",
solver = NULL

)
Arguments

X A matrix containing the fixed effects of the model.

Z A matrix containing the random effects of the model.

y A matrix containing the observed phenotype over each neighborhood.

offsets A vector containing the (log) offsets to apply normalisation for different num-
bers of cells across samples.

init.theta A column vector (m X 1 matrix) of initial estimates of fixed and random effect
coefficients

Kin A n X n covariance matrix to explicitly model variation between observations

random.levels A list describing the random effects of the model, and for each, the different
unique levels.

REML A logical value denoting whether REML (Restricted Maximum Likelihood)
should be run. Default is TRUE.

glmm.control A list containing parameter values specifying the theta tolerance of the model,
the maximum number of iterations to be run, initial parameter values for the
fixed (init.beta) and random effects (init.u), and glmm solver (see details).

dispersion A scalar value for the initial dispersion of the negative binomial.

geno.only A logical value that flags the model to use either just the matrix ‘Kin‘ or the
supplied random effects.

intercept.type A character scalar, either fixed or random that sets the type of the global intercept
variable in the model. This only applies to the GLMM case where additional ran-
dom effects variables are already included. Setting intercept.type="fixed"
or intercept.type="random"” will require the user to test their model for fail-
ures with each. In the case of using a kinship matrix, intercept.type="fixed"
is set automatically.
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solver a character value that determines which optimisation algorithm is used for the
variance components. Must be either HE (Haseman-Elston regression) or Fisher
(Fisher scoring).

Details

This function runs a negative binomial generalised linear mixed effects model. If mixed effects are
detected in testNhoods, this function is run to solve the model. The solver defaults to the Fisher op-
timiser, and in the case of negative variance estimates it will switch to the non-negative least squares
(NNLS) Haseman-Elston solver. This behaviour can be pre-set by passing glmm.control$solver="HE"
for Haseman-Elston regression, which is the recommended solver when a covariance matrix is pro-
vided, or glmm.control$solver="HE-NNLS" which is the constrained HE optimisation algorithm.

Value

A list containing the GLMM output, including inference results. The list elements are as follows:

FE: numeric vector of fixed effect parameter estimates.

RE: list of the same length as the number of random effect variables. Each slot contains the best
linear unbiased predictors (BLUPs) for the levels of the corresponding RE variable.

Sigma: numeric vector of variance component estimates, 1 per random effect variable.
converged: logical scalar of whether the model has reached the convergence tolerance or not.
Iters: numeric scalar with the number of iterations that the model ran for. Is strictly <=max. i ter.
Dispersion: numeric scalar of the dispersion estimate computed off-line

Hessian: matrix of 2nd derivative elements from the fixed and random effect parameter inference.

SE: matrix of standard error estimates, derived from the hessian, i.e. the square roots of the
diagonal elements.

t: numeric vector containing the compute t-score for each fixed effect variable.
COEFF: matrix containing the coefficient matrix from the mixed model equations.
P: matrix containing the elements of the REML projection matrix.

Vpartial: list containing the partial derivatives of the (pseudo)variance matrix with respect to
each variance component.

Ginv: matrix of the inverse variance components broadcast to the full Z matrix.
Vsinv: matrix of the inverse pseudovariance.
Winv: matrix of the inverse elements of W = DA-1 V DA-1

VCOV: matrix of the variance-covariance for all model fixed and random effect variable parameter
estimates. This is required to compute the degrees of freedom for the fixed effect parameter
inference.

DF: numeric vector of the number of inferred degrees of freedom. For details see Satterthwaite_df.

PVALS: numeric vector of the compute p-values from a t-distribution with the inferred number of
degrees of freedom.

ERROR: list containing Rcpp error messages - used for internal checking.
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Author(s)
Mike Morgan

Examples

data(sim_nbglmm)

random.levels <- list("RE1"=paste(”"RE1", levels(as.factor(sim_nbglmm$RE1)), sep="_"),
"RE2"=paste("RE2", levels(as.factor(sim_nbglmm$RE2)), sep="_"))

X <- as.matrix(data.frame("Intercept”=rep(1, nrow(sim_nbglmm)), "FE2"=as.numeric(sim_nbglmm$FE2)))

Z <- as.matrix(data.frame("RE1"=paste("RE1", as.numeric(sim_nbglmm$RE1), sep="_"),

"RE2"=paste("RE2", as.numeric(sim_nbglmm$RE2), sep="_")))
y <- sim_nbglmm$Mean.Count
dispersion <- 0.5

glmm.control <- glmmControl.defaults()

glmm.control$theta.tol <- 1e-6

glmm.control$max.iter <- 15

model.list <- fitGLMM(X=X, Z=Z, y=y, offsets=rep(@, nrow(X)), random.levels=random.levels,
REML = TRUE, glmm.control=glmm.control, dispersion=dispersion, solver="Fisher")

model.list

fitPLGlmm GLMM parameter estimation using pseudo-likelihood

Description

Iteratively estimate GLMM fixed and random effect parameters, and variance component parame-
ters using Fisher scoring based on the Pseudo-likelihood approximation to a Normal loglihood.

Usage

fitPLG1mm(
Z,
X,
muvec,
offsets,
curr_beta,
curr_theta,
curr_u,
curr_sigma,
curr_G,
Y,
u_indices,
theta_conv,
rlevels,
curr_disp,
REML,
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maxit,
solver,
vardist

Arguments

Z

X

muvec
offsets
curr_beta
curr_theta
curr_u
curr_sigma
curr_G

y

u_indices

theta_conv
rlevels
curr_disp
REML

maxit

solver

vardist

Details
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mat - sparse matrix that maps random effect variable levels to observations
mat - sparse matrix that maps fixed effect variables to observations

vec vector of estimated phenotype means

vec vector of model offsets

vec vector of initial beta estimates

vec vector of initial parameter estimates

vec of initial u estimates

vec of initial sigma estimates

mat ¢ X ¢ matrix of variance components

vec of observed counts

List a List, each element contains the indices of Z relevant to each RE and all its
levels

double Convergence tolerance for paramter estimates

List containing mapping of RE variables to individual levels
double Dispersion parameter estimate

bool - use REML for variance component estimation

int maximum number of iterations if theta_conv is FALSE

string which solver to use - either HE (Haseman-Elston regression) or Fisher
scoring

string which variance form to use NB = negative binomial, P=Poisson [not yet
implemented. ]

Fit a NB-GLMM to the counts provided in y. The model uses an iterative approach that switches
between the joint fixed and random effect parameter inference, and the variance component estima-
tion. A pseudo-likelihood approach is adopted to minimise the log-likelihood of the model given
the parameter estimates. The fixed and random effect parameters are estimated using Hendersons
mixed model equations, and the variance component parameters are then estimated with the speci-
fied solver, i.e. Fisher scoring, Haseman-Elston or constrained Haseman-Elston regression. As the
domain of the variance components is [0, +Inf], any negative variance component estimates will
trigger the switch to the HE-NNLS solver until the model converges.
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Value

A list containing the following elements (note: return types are dictated by Rcpp, so the R types
are described here):
FE: numeric vector of fixed effect parameter estimates.

RE: list of the same length as the number of random effect variables. Each slot contains the best
linear unbiased predictors (BLUPs) for the levels of the corresponding RE variable.

Sigma: numeric vector of variance component estimates, 1 per random effect variable.
converged: logical scalar of whether the model has reached the convergence tolerance or not.
Iters: numeric scalar with the number of iterations that the model ran for. Is strictly <=max. i ter.
Dispersion: numeric scalar of the dispersion estimate computed off-line

Hessian: matrix of 2nd derivative elements from the fixed and random effect parameter inference.

SE: matrix of standard error estimates, derived from the hessian, i.e. the square roots of the
diagonal elements.

t: numeric vector containing the compute t-score for each fixed effect variable.
COEFF: matrix containing the coefficient matrix from the mixed model equations.
P: matrix containing the elements of the REML projection matrix.

Vpartial: list containing the partial derivatives of the (pseudo)variance matrix with respect to
each variance component.

Ginv: matrix of the inverse variance components broadcast to the full Z matrix.
Vsinv: matrix of the inverse pseudovariance.
Winv: matrix of the inverse elements of W = D*-1 V DA-1

VCOV: matrix of the variance-covariance for all model fixed and random effect variable parameter
estimates. This is required to compute the degrees of freedom for the fixed effect parameter
inference.

CONVLIST: list of list containing the parameter estimates and differences between current and
previous iteration estimates at each model iteration. These are included for each fixed effect,
random effect and variance component parameter. The list elements for each iteration are:
ThetaDiff, SigmaDiff, beta, u, sigma.

Author(s)

Mike Morgan

Examples

NULL
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glmmControl.defaults  glmm control default values

Description

This will give the default values for the GLMM solver

Usage

glmmControl.defaults(...)

Arguments

see fitGLMM for details

Details

The default values for the parameter estimation convergence is le-6, and the maximum number of
iterations is 100. In practise if the solver converges it generally does so fairly quickly on moderately
well conditioned problems. The default solver is Fisher scoring, but this will switch (with a warning
produced) to the NNLS Haseman-Elston solver if negative variance estimates are found.

Value

list containing the default values GLMM solver. This can be saved in the user environment and
then passed to testNhoods directly to modify the convergence criteria of the solver that is used.

theta.tol: numeric scalar that sets the convergence threshold for the parameter inference - this
is applied globally to fixed and random effect parameters, and to the variance estimates.

max.iter: numeric scalar that sets the maximum number of iterations that the NB-GLMM will
run for.

solver: character scalar that sets the solver to use. Valid values are Fisher, HE or HE-NNLS.
See fitGLMM for details.

Author(s)
Mike Morgan

Examples

mmcontrol <- glmmControl.defaults()
mmcontrol

mmcontrol$solver <- "HE-NNLS"
mmcontrol
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graphSpatialFDR

graphSpatialFDR

Control the spatial FDR

Description

Borrowing heavily from cydar which corrects for multiple-testing using a weighting scheme based
on the volumetric overlap over hyperspheres. In the instance of graph neighbourhoods this weight-
ing scheme can use graph connectivity or incorpate different within-neighbourhood distances for
the weighted FDR calculation.

Arguments

x.nhoods
graph

pvalues

weighting

A list of vertices and the constituent vertices of their neighbourhood
The kNN graph used to define the neighbourhoods

A vector of p-values calculated from a GLM or other appropriate statistical test
for differential neighbourhood abundance

A numeric integer that determines the kth nearest neighbour distance to use for
the weighted FDR. Only applicaple when using weighting="k-distance".

A string scalar defining which weighting scheme to use. Choices are: max,
k-distance, neighbour-distance or graph-overlap.

reduced.dimensions

distances

indices

Details

(optional) A matrix of cells X reduced dimensions used to calculate the kNN
graph. Only necessary if this function is being used outside of testNhoods
where the Milo object is not available

(optional) A matrix of cell-to-cell distances or a list of distance matrices, 1
per neighbourhood. Only necessary if this function is being used outside of
testNhoods where the Milo object is not available.

(optional) A list of neighbourhood index vertices in the same order as the input
neighbourhoods. Only used for the k-distance weighting.

Each neighbourhood is weighted according to the weighting scheme defined. k-distance uses
the distance to the kth nearest neighbour of the index vertex, neighbour-distance uses the aver-
age within-neighbourhood Euclidean distance in reduced dimensional space, max uses the largest
within-neighbourhood distance from the index vertex, and graph-overlap uses the total number of
cells overlapping between neighborhoods (distance-independent measure). The frequency-weighted
version of the BH method is then applied to the p-values, as in cydar.

Value

A vector of adjusted p-values

Author(s)

Adapted by Mike Morgan, original function by Aaron Lun



groupNhoods

Examples

NULL
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groupNhoods

Group neighbourhoods

Description

This function groups overlapping and concordantly DA neighbourhoods, using the louvain commu-
nity detection algorithm.

Usage
groupNhoods (
X’
da.res,
da.fdr = 0.1

overlap =1,

’

max.1lfc.delta
merge.discord
subset.nhoods

compute.new
na.function

Arguments

X
da.res
da.fdr

overlap

max.lfc.delta

merge.discord

subset.nhoods
compute. new

na.function

NULL,

= FALSE,
= NULL,
FALSE,
"na.pass”

A Milo object containing single-cell gene expression and neighbourhoods.
A data. frame containing DA results, as expected from running testNhoods.

A numeric scalar that determines at what FDR neighbourhoods are declared DA
for the purposes of aggregating across concorantly DA neighbourhoods.

A scalar integer that determines the number of cells that must overlap between
adjacent neighbourhoods for merging.

A scalar that determines the absolute difference in log fold change below which
neighbourhoods should not be considered adjacent. Default=NULL

A logical scalar that overrides the default behaviour and allows adjacent neigh-
bourhoods to be merged if they have discordant log fold change signs. Using
this argument is generally discouraged, but may be useful for constructing an
empirical null group of cells, regardless of DA sign.

A logical, integer or character vector indicating which neighbourhoods to subset
before grouping. All other neighbourhoods will be assigned NA

A logical scalar indicating whether to force computing a new neighbourhood
adjacency matrix if already present.

A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass (default="na.pass’).
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Details

Louvain clustering is applied to the neighbourhood graph. This graph is first modified based on
two criteria: 1) neighbourhoods share at least overlap number of cells, and 2) the DA log fold
change sign is concordant. This behaviour can be modulated by setting overlap to be more or less
stringent. Additionally, a threshold on the log fold-changes can be set, such that max.1fc.delta
is required to retain edges between adjacent neighbourhoods. Note: adjacent neighbourhoods will
never be merged with opposite signs.

Value

A data.frame of model results (as da.res input) with a new column storing the assigned group
label for each neighbourhood (NhoodGroup column)

Author(s)
Emma Dann & Mike Morgan
initialiseG Construct the initial G matrix
Description

This function maps the variance estimates onto the full ¢ x g levels for each random effect. This
ensures that the matrices commute in the NB-GLMM solver. This function is included for reference,
and should not be used directly

Usage

initialiseG(cluster_levels, sigmas, Kin = NULL)

Arguments

cluster_levels A list containing the random effect levels for each variable

sigmas A matrix of ¢ X 1, i.e. a column vector, containing the variance component
estimates
Kin A matrix containing a user-supplied covariance matrix
Details

Broadcast the variance component estimates to the full c\*q x c\*q matrix.

Value

matrix of the full broadcast variance component estimates.

Author(s)
Mike Morgan & Alice Kluzer
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Examples

data(sim_nbglmm)

random.levels <- list("RE1"=paste("RE1", levels(as.factor(sim_nbglmm$RE1)), sep="_"),
"RE2"=paste("RE2", levels(as.factor(sim_nbglmm$RE2)), sep="_"))

rand.sigma <- matrix(runif(2), ncol=1)

rownames (rand.sigma) <- names(random.levels)

big.G <- initialiseG(random.levels, rand.sigma)

dim(big.G)

initializeFullz Construct the full Z matrix

Description

Using a simplified version of the n x ¢ Z matrix, with one column per variable, construct the fully
broadcast n x (c*q) binary matrix that maps each individual onto the random effect variable levels.
It is not intended for this function to be called by the user directly, but it can be useful to debug
mappings between random effect levels and input variables.

Usage

initializeFullZ(Z, cluster_levels, stand.cols = FALSE)

Arguments

Z A n x ¢ matrix containing the numeric or character levels
cluster_levels A list that maps the column names of Z onto the individual levels

stand.cols A logical scalar that determines if Z* should be computed which is the row-
centered and scaled version of the full Z matrix

Details
To make sure that matrices commute it is necessary to construct the full n x c*q matrix. This is a bi-
nary matrix where each level of each random effect occupies a column, and the samples/observations
are mapped onto the correct levels based on the input Z.

Value
matrix Fully broadcast Z matrix with one column per random effect level for all random effect
variables in the model.

Author(s)
Mike Morgan & Alice Kluzer
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Examples

data(sim_nbglmm)

random.levels <- list("RE1"=paste("RE1", levels(as.factor(sim_nbglmm$RE1)), sep="_"),
"RE2"=paste("RE2", levels(as.factor(sim_nbglmm$RE2)), sep="_"))

Z <- as.matrix(data.frame("RE1"=paste("RE1", as.numeric(sim_nbglmm$RE1), sep="_"),

"RE2"=paste("RE2", as.numeric(sim_nbglmm$RE2), sep="_")))

fullZ <- initializeFullZ(Z, random.levels)

dim(z)

dim(fullz)

makeNhoods Define neighbourhoods on a graph (fast)

Description

This function randomly samples vertices on a graph to define neighbourhoods. These are then re-
fined by either computing the median profile for the neighbourhood in reduced dimensional space
and selecting the nearest vertex to this position (refinement_scheme = "reduced_dim"), or by com-
puting the vertex with the highest number of triangles within the neighborhood (refinement_scheme
= "graph"). Thus, multiple neighbourhoods may be collapsed down together to prevent over-
sampling the graph space.

Usage

makeNhoods (
X,
prop = 0.1,
k =21,
d = 30,
refined = TRUE,
reduced_dims = "PCA",

refinement_scheme = "reduced_dim"
)
Arguments

X A Milo object with a non-empty graph slot. Alternatively an igraph object on
which neighbourhoods will be defined.

prop A double scalar that defines what proportion of graph vertices to randomly sam-
ple. Must be O < prop < 1.
An integer scalar - the same k used to construct the input graph.
The number of dimensions to use if the input is a matrix of cells X reduced
dimensions.

refined A logical scalar that determines the sampling behavior, default=TRUE imple-

ments a refined sampling scheme, specified by the refinement_scheme argu-
ment.
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reduced_dims If x is an Milo object, a character indicating the name of the reducedDim slot
in the Milo object to use as (default: "PCA’). If x is an igraph object, a matrix
of vertices X reduced dimensions with rownames() set to correspond to the
celllDs.

refinement_scheme
A character scalar that defines the sampling scheme, either "reduced_dim" or
"graph". Default is "reduced_dim".

Details

This function randomly samples graph vertices, then refines them to collapse down the number of
neighbourhoods to be tested. The refinement behaviour can be turned off by setting refine=FALSE,
however, we do not recommend this as neighbourhoods will contain a lot of redundancy and lead
to an unnecessarily larger multiple-testing burden.

Value

A Milo object containing a list of vertices and the indices of vertices that constitute the neighbour-
hoods in the nhoods slot. If the input is a igraph object then the output is a matrix containing a list
of vertices and the indices of vertices that constitute the neighbourhoods.

Author(s)

Emma Dann, Mike Morgan

Examples

require(igraph)
m <- matrix(rnorm(100000), ncol=100)
milo <- buildGraph(m, d=10)

milo <- makeNhoods(milo, prop=0.1)
milo

matrix.trace Compute the trace of a matrix

Description

Exactly what it says on the tin - compute the sum of the matrix diagonal

Usage

matrix.trace(x)

Arguments

X A matrix
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Details

It computes the matrix trace of a square matrix.

Value

numeric scalar of the matrix trace.

Author(s)
Mike Morgan

Examples

matrix.trace(matrix(runif(9), ncol=3, nrow=3))

Milo-class The Milo constructor

Description

The Milo class extends the SingleCellExperiment class and is designed to work with neighbour-
hoods of cells. Therefore, it inherits from the SingleCellExperiment class and follows the same
usage conventions. There is additional support for cell-to-cell distances via distance, and the KNN-
graph used to define the neighbourhoods.

Usage
Milo(

graph = list(),

nhoodDistances = Matrix (0L, sparse = TRUE),
nhoods = Matrix(@L, sparse = TRUE),
nhoodCounts = Matrix(QL, sparse = TRUE),
nhoodIndex = list(),

nhoodExpression = Matrix (0L, sparse = TRUE),

.k = NULL
)
Arguments
Arguments passed to the Milo constructor to fill the slots of the base class. This
should be either a SingleCellExperiment or matrix of features X cells
graph An igraph object or list of adjacent vertices that represents the KNN-graph

nhoodDistances A list containing sparse matrices of cell-to-cell distances for cells in the same
neighbourhoods, one list entry per neighbourhood.
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nhoods A list of graph vertices, each containing the indices of the constiuent graph
vertices in the respective neighbourhood

nhoodCounts A matrix of neighbourhood X sample counts of the number of cells in each
neighbourhood derived from the respective samples

nhoodIndex A list of cells that are the neighborhood index cells.

nhoodExpression
A matrix of gene X neighbourhood expression.

.k An integer value. The same value used to build the k-NN graph if already com-
puted.

Details

In this class the underlying structure is the gene/feature X cell expression data. The additional
slots provide a link between these single cells and the neighbourhood representation. This can be
further extended by the use of an abstracted graph for visualisation that preserves the structure of
the single-cell KNN-graph

A Milo object can also be constructed by inputting a feature X cell gene expression matrix. In this
case it simply constructs a SingleCellExperiment and fills the relevant slots, such as reducedDims.

Value

a Milo object

Author(s)

Mike Morgan

Examples

library(SingleCellExperiment)

ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)

pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimplelList(PCA=pca$x))

milo <- Milo(sce)
milo
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Milo-methods Get and set methods for Milo objects

Description

Get and set methods for Milo object slots. Generally speaking these methods are used internally, but
they allow the user to assign their own externally computed values - should be used with caution.

Value

See individual methods for return values

Getters
In the following descriptions x is always a Milo object.
graph(x): Returns an igraph object representation of the KNN-graph, with number of vertices
equal to the number of single-cells.

nhoodDistances(x): Returns a list of sparse matrix of cell-to-cell distances between nearest neigh-
bours, one list entry per neighbourhood. Largely used internally for computing the k-distance
weighting in graphSpatialFDR.

nhoodCounts(x): Returns a NxM sparse matrix of cell counts in each of N neighbourhoods with
respect to the M experimental samples defined.

nhoodExpression(x): Returns