Package ‘flowCore’

March 6, 2025

Title flowCore: Basic structures for flow cytometry data
Version 2.19.0
Maintainer Mike Jiang <mike@ozette.com>

Description Provides S4 data structures and basic functions to deal with flow
cytometry data.

Depends R (>=3.0.2)

Imports Biobase, BiocGenerics (>= 0.29.2), grDevices, graphics,
methods, stats, utils, stats4, Rcpp, matrixStats, cytolib (>=
2.13.1), S4Vectors

Suggests Rgraphviz, flowViz, flowStats (>= 3.43.4), testthat,
flowWorkspace, flowWorkspaceData, openCyto, knitr, ggcyto,
gridExtra

Collate AllGenerics.R AllClasses.R flowFrame-accessors.R
flowSet-accessors.R transform_gate-methods.R coerce.R
logicalFilterResult-accessors.R summarizeFilter-methods.R
filterSummary-accessors.R manyFilterResult-accessors.R
summary-methods.R multipleFilterResult-accessors.R on-methods.R
transformList-accessors.R identifier-methods.R
parameters-methods.R initialize-methods.R
filterResult-accessors.R in-methods.R rectangleGate-accessors.R
filterResultList-accessors.R I0.R show-methods.R
length-methods.R names-methods.R split-methods.R eval-methods.R
gatingML.R FCSTransTransform.R median-logicle-transform.R
utils.R flowCore.R GvHD.R CytoExploreR_wrappers.R cppl11.R

License Artistic-2.0

biocViews ImmunoOncology, Infrastructure, FlowCytometry,
CellBasedAssays

LinkingTo cppl1, BH(>= 1.81.0.0), cytolib, RProtoBufLib
VignetteBuilder knitr

SystemRequirements GNU make, C++11

RoxygenNote 7.2.3

Encoding UTF-8



2 Contents

git_url https://git.bioconductor.org/packages/flowCore
git_branch devel

git_last_commit 46f519¢

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2025-03-06

Author B Ellis [aut],
Perry Haaland [aut],
Florian Hahne [aut],
Nolwenn Le Meur [aut],
Nishant Gopalakrishnan [aut],
Josef Spidlen [aut],
Mike Jiang [aut, cre],
Greg Finak [aut],
Samuel Granjeaud [ctb]

Contents
flowCore-package . . . . . . . . ... 5
arcsinhTransform . . . . . . . . . . ..o 5
asinht-class . . . . . .. 6
asinhtGml2-class . . . . . . . . . . . e 8
biexponentialTransform . . . . . . . . . ... .. L 10
boundaryFilter-class . . . . . . . . . L 11
characterOrNumeric-class . . . . . . . . . . ... .. L 13
characterOrParameters-class . . . . . . . . . . .. ... L o 14
characterOrTransformation-class . . . . . . . . . . .. ... .. ... ... ... 14
checkOffset . . . . . . . . . e 15
COBICE .« v v v v e e v e e e e e e e e e e e e e 15
collapse_desc . . . . . . . . . 16
compensatedParameter-class . . . . . . .. ... oL o 16
compensation-class . . . . . ... L. e 18
complementFilter-class . . . . . . . . . .. 21
concreteFilter-class . . . . . . . ... 21
CytoExploreR_exports . . . . . . . . . . e 22
decompensate . . . . . ... ... e e e 22
dglpolynomial-class . . . . . . . . ... 23
each_col . . . . . L e 24
EHtrans-class . . . . . . . . . . e 25
ellipsoidGate-class . . . . . . . . . ... 26
estimateMedianLogicle . . . . . . . ... L o 28
exponential-class . . . . . ... 29
expressionFilter-class . . . . . . . . ..o 30
FCSTransTransform . . . . . . . . .. . .. . e 32
filter-and-methods . . . . . . . . ... 34

filter-class . . . . . . . . e 34



Contents

3
filter-in-methods . . . . . . . ... 36
filter-methods . . . . . . . ... 36
filter-on-methods . . . . . . . . . . ... 38
filterDetails-methods . . . . . . . . . .. L 38
filterList-class . . . . . . . . . . L 39
filterReference-class . . . . . . . . . . . .. 40
filterResult-class . . . . . . . . ... 41
filterResultList-class . . . . . . . . . . 41
filters-class . . . . . . . .. e e e e e e e 43
filterSummary-class . . . . . . . ... 44
filterSummaryList-class . . . . . . . ..o 46
flowFrame-class . . . . . . . . . ... 47
flowSet-class . . . . . . . .. e e e e 54
flowSet_to_LiSt . . . . . . . e 59
fr_append_cols . . . . . .. e e 60
fSAPPly . . . e 61
getChannelMarker . . . . . . . . . ... 62
getlndexSort . . . . . . . L e e e 63
GVHD . . . e 64
hyperlog-class . . . . . . . . . e 65
hyperlogtGml2-class . . . . . . . . . . . . . e 66
identifier-methods . . . . . . . . ... 69
intersectFilter-class . . . . . . . . . ... e 70
inverseLogicleTransform . . . . . . . . .. ... oo 70
invsplitscale-class . . . . . . . . . L. 72
keyword-methods . . . . . . .. L. 73
kmeansFilter-class . . . . . . . . . . 75
linearTransform . . . . . . . . . . . L 77
lintGml2-class . . . . . . . . . . e 78
InTransform . . . . . . . . . .. e e e 80
logarithm-class . . . . . . . . . . . e 81
logicalFilterResult-class . . . . . . . . . . . . . e 82
logicletGml2-class . . . . . . . . ... L 83
logicleTransform . . . . . . . . . . . .. 86
logtGmlI2-class . . . . . . . . . e 88
logTransform . . . . . . . . . . . e 90
manyFilterResult-class . . . . . . . ... oo 91
mMarkernames . . . . . . . ..o e e e e 92
multipleFilterResult-class . . . . . . . . . . . . .. .. 93
normalization-class . . . . . . . . . . . . e e e e e e 94
nullParameter-class . . . . . . . . . ... e e 95
parameterFilter-class . . . . . . . . . ... 96
parameters-class . . . . ... L e e e e e e e 96
parameters-methods . . . . . . ..o 97
parameterTransform-class . . . . . . . .. ... 98
polygonGate-class . . . . . . . . . . . e e e 98
polytopeGate-class . . . . . . . . ... 100

quadGate-class . . . . . . .. 102



Index

Contents

quadratic-Class . . . . . .. e e e e e e e 104
quadraticTransform . . . . . . . . ... oL 105
randomFilterResult-class . . . . . . . . . . . . .. ... 106
Tatio-Class . . . . . . .. e e e 107
ratiotGmI2-class . . . . . . . . . e e e e e 108
read.FCS . . . . e 110
read.FCSheader . . . . . . . . . . . . e 113
read.flowSet . . . . . .. e 114
rectangleGate-class . . . . . . . ... 116
TOMALE_ZALE . .+ . v v v v e e e e e e e e e e e e e e e e e e e e e e 118
sampleFilter-class . . . . . . . . . . L 120
scaleTransform . . . . . . . . ... e e 121
scale_gate . . . ... L e e e e e 122
setOperationFilter-class . . . . . . . . . . . . L 124
shift_gate . . . . . . . e e 124
singleParameterTransform-class . . . . . . . . . .. ... ... ... 126
sinht-class . . . . . . . L e e e e 127
splitmethods . . . . . . . .. 128
splitscale-class . . . . . . . . L e e e 130
splitScaleTransform . . . . . . . . . .. ... 132
squareroot-class . . . ... L. L e e e 134
Subset-methods . . . . . . . . .. e 135
subsetFilter-class . . . . . . . . . . e e 136
summarizeFilter-methods . . . . . . . . . .. ... ... ... 137
timeFilter-class . . . . . . . . . . e e e 138
transform . . . ... L e 140
transform-class . . . . . . . .. e e 141
transformation-class . . . . . . . . . L. e 142
transformFilter-class . . . . . . . . . . ... 142
transformList-class . . . . . . . .. 143
transformMap-class . . . . . . ... 145
transformReference-class . . . . . . . . . ... L. 146
transform_gate . . . . . . . L. e 146
truncateTransform . . . . . . . . . . L. 148
unionFilter-class . . . . . . . . . . 149
unitytransform-class . . . . .. ..o 150
updateTransformKeywords . . . . . . . . . .. ... L L 151
validFilters . . . . . . . . . e e e e 151
write. FCS . . . . e 152
write.flowSet . . . . . L e e 153

155



flowCore-package 5

flowCore-package flowCore: Basic structures for flow cytometry data

Description

Provides S4 data structures and basic infrastructure and functions to deal with flow cytometry data.

Details

Define important flow cytometry data classes: flowFrame, flowSet and their accessors.

Provide important transformation, filter, gating, workflow, and summary functions for flow cytom-
etry data analysis.

Most of flow cytometry related Bioconductor packages (such as flowStats, flowFP, flowQ, flowViz,
flowMerge, flowClust) are heavily dependent on this package.

Package: flowCore
Type: Package
Version:  1.11.20
Date: 2009-09-16
License: Artistic-2.0

Author(s)

Maintainer: Florian Hahne <fhahne @fhcrc.org>

Authors: B. Ellis, P. Haaland, F. Hahne, N. Le Meur, N. Gopalakrishnan

arcsinhTransform Create the definition of an arcsinh transformation function (base spec-
ified by user) to be applied on a data set

Description

Create the definition of the arcsinh Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x<-asinh(a+b*x)+c). The trans-
formation would normally be used to convert to a linear valued parameter to the natural logarithm
scale. By default a and b are both equal to 1 and c to 0.

Usage

arcsinhTransform(transformationId="defaultArcsinhTransform”, a=1, b=1, c=0)



6 asinht-class

Arguments
transformationId
character string to identify the transformation
a positive double that corresponds to a shift about 0.
b positive double that corresponds to a scale factor.
c positive double
Value

Returns an object of class transform.

Author(s)

B. Ellis

See Also

transform-class, transform, asinh

Other Transform functions: biexponentialTransform(), inverselLogicleTransform(), linearTransform(),
InTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

Examples

samp <- read.FCS(system.file("extdata”,
"@877408774.B08", package="flowCore"))
asinhTrans <- arcsinhTransform(transformationId="1n-transformation”, a=1, b=1, c=1)
translist <- transformList('FSC-H', asinhTrans)
dataTransform <- transform(samp, translist)

asinht-class Class "asinht"

Description

Inverse hyperbolic sine transform class, which represents a transformation defined by the function:
f(parameter, a,b) = sinh™(a * parameter) * b

This definition is such that it can function as an inverse of sinht using the same definitions of the
constants a and b.



asinht-class 7

Slots

.Data Object of class "function”.

a Object of class "numeric” —non-zero constant.

b Object of class "numeric” — non-zero constant.

parameters Object of class "transformation” — flow parameter to be transformed

transformationId Object of class "character” —unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor asinht (parameter,a,b, transformationId)

Extends
Class "singleParameterTransform”, directly.
Class "transform”, by class "singleParameterTransform", distance 2.
Class "transformation”, by class "singleParameterTransform", distance 3.

Class "characterOrTransformation”, by class "singleParameterTransform", distance 4.

Note

The inverse hyperbolic sin transformation object can be evaluated using the eval method by passing
the data frame as an argument.The transformed parameters are returned as a matrix with a single
column. (See example below)

Author(s)
Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

sinht

Other mathematical transform classes: EHtrans-class, asinhtGml2-class, dglpolynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
asinhi<-asinht(parameters="FSC-H",6a=2,b=1,transformationId="asinH1")
transOut<-eval (asinh1) (exprs(dat))



8 asinhtGml2-class

asinhtGml2-class Class asinhtGml2

Description

Inverse hyperbolic sin transformation as parameterized in Gating-ML 2.0.

Details
asinhtGml2 is defined by the following function:

bound( f, boundMin, boundMax) = max(min(f, boundMazx), boundMin))

where

f(parameter, T, M, A) = (asinh(parameterssinh(M=*In(10))/T)+Axln(10))/((M+A)xIn(10))

This transformation is equivalent to Logicle(T, 0, M, A) (i.e., with W=0). It provides an inverse
hyperbolic sine transformation that maps a data value onto the interval [0,1] such that:

* The top of scale value (i.e., T ) is mapped to 1.

» Large data values are mapped to locations similar to an (M + A)-decade logarithmic scale.

* A decades of negative data are brought on scale.
In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result
of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the
result of the f function be less than boundMin, then let the result of this transformation be boundMin.
Analogically, should the result of the f function be more than boundMax, then let the result of this

transformation be boundMax. The boundMin parameter shall not be greater than the boundMax
parameter.

Slots

.Data Object of class function.
T Object of class numeric — positive constant (top of scale value).
M Object of class numeric — positive constant (desired number of decades).

A Object of class numeric — non-negative constant that is less than or equal to M (desired number
of additional negative decades).

parameters Object of class "transformation” — flow parameter to be transformed.
transformationId Object of class "character” —unique ID to reference the transformation.
boundMin Object of class numeric — lower bound of the transformation, default -Inf.

boundMax Object of class numeric — upper bound of the transformation, default Inf.

Objects from the Class

Objects can be created by calls to the constructor

asinhtGml2(parameter, T, M, A, transformationId, boundMin, boundMax)



asinhtGmI2-class 9

Extends

Class singleParameterTransform, directly.
Class transform, by class singleParameterTransform, distance 2.
Class transformation, by class singleParameterTransform, distance 3.

Class characterOrTransformation, by class singleParameterTransform, distance 4.

Note

The inverse hyperbolic sin transformation object can be evaluated using the eval method by passing
the data frame as an argument. The transformed parameters are returned as a matrix with a single
column. (See example below)

Author(s)

Spidlen, J.

References

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for rep-
resenting gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/
20141009.pdf

See Also

asinht, transform-class, transform

Other mathematical transform classes: EHtrans-class, asinht-class, dgipolynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

myDataln <- read.FCS(system.file("extdata", "0@877408774.B08",
package="flowCore"))

myASinH1 <- asinhtGml2(parameters = "FSC-H", T = 1000, M = 4.5,
A = 0@, transformationId="myASinH1")

transOut <- eval(myASinH1) (exprs(myDataln))


http://flowcyt.sourceforge.net/gating/20141009.pdf
http://flowcyt.sourceforge.net/gating/20141009.pdf

10 biexponential Transform

biexponentialTransform
Compute a transform using the 'biexponential’ function

Description

The ’biexponential’ is an over-parameterized inverse of the hyperbolic sine. The function to be
inverted takes the form biexp(x) = a*exp(b*(x-w))-c*exp(-d*(x-w))+f with default parameters se-
lected to correspond to the hyperbolic sine.

Usage

biexponentialTransform(transformationId="defaultBiexponentialTransform"”,
a=0.5 b=1,c=05,d=1, f=0, w=20,
tol = .Machine$double.eps”0.25, maxit = as.integer(5000))

Arguments
transformationId
A name to assign to the transformation. Used by the transform/filter integration
routines.
a See the function description above. Defaults to 0.5
b See the function description above. Defaults to 1.0
C See the function description above. Defaults to 0.5 (the same as a)
d See the function description above. Defaults to 1 (the same as b)
f A constant bias for the intercept. Defaults to 0.
w A constant bias for the 0 point of the data. Defaults to 0.
tol A tolerance to pass to the inversion routine (uniroot usually)
maxit A maximum number of iterations to use, also passed to uniroot
Value

Returns values giving the inverse of the biexponential within a certain tolerance. This function
should be used with care as numerical inversion routines often have problems with the inversion
process due to the large range of values that are essentially 0. Do not be surprised if you end up
with population splitting about w and other odd artifacts.

Author(s)
B. Ellis, N Gopalakrishnan

See Also

transform

Other Transform functions: arcsinhTransform(), inverselLogicleTransform(), linearTransform(),
InTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()



boundaryFilter-class

Examples

11

# Construct some "flow-like"” data which tends to be hetereoscedastic.

data(GvHD)

biexp <- biexponentialTransform("myTransform™)

after.1 <- transform(GvHD, transformList('FSC-H', biexp))

biexp <- biexponentialTransform("myTransform” ,w=10)
after.2 <- transform(GvHD, transformList('FSC-H', biexp))

opar = par(mfcol=c(3, 1))

plot(density(exprs(GvHD[[111)[, 11), main="Original")
plot(density(exprs(after.1[[1]11)[, 11), main="Standard Transform")
plot(density(exprs(after.2[[1]1])[, 11), main="Shifted Zero Point")

boundaryFilter-class Class "boundaryFilter"

Description

Class and constructor for data-driven filter objects that discard margin events.

Usage

boundaryFilter(x, tolerance=.Machine$double.eps, side=c("both”, "lower",
"upper"), filterId="defaultBoundaryFilter")

Arguments

X

tolerance

side

filterId

Character giving the name(s) of the measurement parameter(s) on which the
filter is supposed to work. Note that all events on the margins of ay of the
channels provided by x will be discarded, which is often not desired. Such
events may not convey much information in the particular channel on which
their value falls on the margin, however they may well be informative in other
channels.

Numeric vector, used to set the tolerance slot of the object. Can be set sepa-
rately for each element in x. R’s recycling rules apply.

Character vector, used to set the side slot of the object. Can be set separately
for each element in x. R’s recycling rules apply.

An optional parameter that sets the filterId slot of this filter. The object can
later be identified by this name.



12 boundaryFilter-class

Details

Flow cytomtery instruments usually operate on a given data range, and the limits of this range are
stored as keywords in the FSC files. Depending on the amplification settings and the dynamic range
of the measured signal, values can occur that are outside of the measurement range, and most instru-
ments will simply pile those values at the minimum or maximum range limit. The boundaryFilter
removes these values, either for a single parameter, or for a combination of parameters. Note that
it is often desirable to treat boundary events on a per-parameter basis, since their values might be
uninformative for one particular channel, but still be useful in all of the other channels.

The constructor boundaryFilter is a convenience function for object instantiation. Evaluating a
boundaryFilter results in a single sub-populations, an hence in an object of class filterResult.
Value

Returns a boundaryFilter object for use in filtering flowFrames or other flow cytometry objects.

Slots

tolerance Object of class "numeric”. The machine tolerance used to decide whether an event is
on the measurement boundary. Essentially, this is done by evaluating x>minRange+tolerance
& x<maxRange-tolerance.

side Object of class "character”. The margin on which to evaluate the filter. Either upper for
the upper margin or lower for the lower margin or both for both margins.
Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter”, by class parameterFilter, distance 3.

Objects from the Class
Objects can be created by calls of the form new("boundaryFilter”,...) or using the constructor
boundaryFilter. Using the constructor is the recommended way.

Methods

%in% signature(x ="flowFrame"”, table = "boundaryFilter"): The workhorse used to eval-
uate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "boundaryFilter"): Print information about the filter.

Author(s)

Florian Hahne

See Also

flowFrame, flowSet, filter for evaluation of boundaryFilters and Subset for subsetting of
flow cytometry data sets based on that.



characterOrNumeric-class 13

Examples

## Loading example data
dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

## Create directly. Most likely from a command line
boundaryFilter("FSC-H", filterId="myBoundaryFilter")

## To facilitate programmatic construction we also have the following
bf <- boundaryFilter(filterId="myBoundaryFilter", x=c("FSC-H"))

## Filtering using boundaryFilter
fres <- filter(dat, bf)

fres

summary (fres)

## We can subset the data with the result from the filtering operation.
Subset(dat, fres)

## A boundaryFilter on the lower margins of several channels
bf2 <- boundaryFilter(x=c("FSC-H", "SSC-H"), side="lower")

characterOrNumeric-class
Class "characterOrNumeric"

Description

A simple union class of character and numeric. Objects will be created internally whenever
necessary and the user should not need to explicitly interact with this class.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("characterOrNumeric")



14 characterOrTransformation-class

characterOrParameters-class
Class "characterOrParameters"

Description

A simple union class of character and parameters. Objects will be created internally whenever
necessary and the user should not need to explicitly interact with this class.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("characterOrParameters”)

characterOrTransformation-class
Class "characterOrTransformation”

Description

A simple union class of character and transformation. Objects will be created internally when-
ever necessary and the user should not need to explicitly interact with this class.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("characterOrTransformation”)



checkOffset 15

checkOffset Fix the offset when its values recorded in header and TEXT don’t agree

Description

Fix the offset when its values recorded in header and TEXT don’t agree

Usage

checkOffset(offsets, x, ignore.text.offset = FALSE, ...)
Arguments

offsets the named vector returned by findOffsets

X the text segmented returned by readFCStext

ignore.text.offset
whether to ignore the offset info stored in TEXT segment

not used.
Value
the updated offsets
coerce Convert an object to another class
Description

These functions manage the relations that allow coercing an object to a given class.

Arguments
from, to The classes between which def performs coercion. (In the case of the coerce
function, these are objects from the classes, not the names of the classes, but
you’re not expected to call coerce directly.)
Details

The function supplied as the third argument is to be called to implement as(x, to) when x has
class from. Need we add that the function should return a suitable object with class to.

Author(s)
F. Hahne, B. Ellis



16 compensatedParameter-class

Examples

samp1 <- read.FCS(system.file("extdata","0877408774.E07", package="flowCore"))
samp2 <- read.FCS(system.file("extdata”, "0877408774.B08", package="flowCore"))
samples <-list("samplel"=sampl,"sample2"=samp2)

experiment <- as(samples,”flowSet")

collapse_desc Coerce the list of the keywords into a character Also flatten spillover
matrix into a string

Description

Coerce the list of the keywords into a character Also flatten spillover matrix into a string

Usage

collapse_desc(d, collapse.spill = TRUE)

Arguments

d a named list of keywords

collapse.spill whether to flatten spillover matrix to a string

Value

a list of strings

Examples

data(GvHD)
fr <- GvHDL[1]]
collapse_desc(keyword(fr))

compensatedParameter-class
Class "compensatedParameter”

Description

Emission spectral overlap can be corrected by subtracting the amount of spectral overlap from the
total detected signals. This compensation process can be described by using spillover matrices.



compensatedParameter-class 17

Details

The compensatedParameter class allows for compensation of specific parameters the user is inter-
ested in by creating compensatedParameter objects and evaluating them. This allows for use of
compensatedParameter in gate definitions.

Slots
.Data Object of class "function”.
parameters Object of class "character” — the flow parameters to be compensated.

spillRefId Object of class "character” — the name of the compensation object (The compensa-
tion object contains the spillover Matrix).

searchEnv Object of class "environment” -environment in which the compensation object is de-
fined.

transformationId Object of class "character” — a unique Id to reference the compensatedPa-
rameter object.

Objects from the Class

Objects can be created by calls to the constructor of the form compensatedParameter(parameters,spillRefId, transfort

Extends

Class "transform”, directly. Class "transformation”, by class "transform", distance 2. Class
"characterOrTransformation”, by class "transform", distance 3.

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument. The transformed parameters are returned as a matrix with a single column. (See example
below)

Author(s)
Gopalakrishnan N,F.Hahne

See Also

compensation

Examples

samp <- read.flowSet(path=system.file("extdata”, "compdata”, "data", package="flowCore"))
cfile <- system.file("extdata”,"compdata”,"compmatrix"”, package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)

comp.mat

## create a compensation object
comp <- compensation(comp.mat,compensationId="comp1")
## create a compensated parameter object



18

compensation-class

cPari1<-compensatedParameter(c("FL1-H","FL3-H"),"comp"”,searchEnv=.GlobalEnv)
compOut<-eval (cPar1) (exprs(samp[[1]1]1))

compensation-class Class "compensation”

Description

Class and methods to compensate for spillover between channels by applying a spillover matrix to
a flowSet or a flowFrame assuming a simple linear combination of values.

Usage
compensation(..., spillover, compensationId="defaultCompensation")
compensate(x, spillover, ...)
Arguments
spillover The spillover or compensation matrix.
compensationId The identifier for the compensation object.
X An object of class flowFrame or flowSet.
Further arguments.
The constructor is designed to be useful in both programmatic and interactive
settings, and ...serves as a container for possible arguments. The following
combinations of values are allowed:
Elements in .. .are character scalars of parameter names or transform objects
and the colnames in spillover match to these parameter names.
The first element in ...is a character vector of parameter names or a list of
character scalars or transform objects and the colnames in spillover match
to these parameter names.
Argument spillover is missing and the first elementin . ..is amatrix, in which
case it is assumed to be the spillover matrix.
...1s missing, in which case all parameter names are taken from the colnames
of spillover.
Details

The essential premise of compensation is that some fluorochromes may register signals in detectors
that do not correspond to their primary detector (usually a photomultiplier tube). To compensate for
this fact, some sort of standard is used to obtain the background signal (no dye) and the amount of
signal on secondary channels for each fluorochrome relative to the signal on their primary channel.

To calculate the spillover percentage we use either the mean or the median (more often the latter)
of the secondary signal minus the background signal for each dye to obtain n by n matrix, S, of



compensation-class 19

so-called spillover values, expressed as a percentage of the primary channel. The observed values
are then considered to be a linear combination of the true fluorescence and the spillover from each
other channel so we can obtain the true values by simply multiplying by the inverse of the spillover
matrix.

The spillover matrix can be obtained through several means. Some flow cytometers provide a
spillover matrix calculated during acquisition, possibly by the operator, that is made available in
the metadata of the flowFrame. While there is a theoretical standard keyword $SPILL it can also
be found in the SPILLOVER or SPILL keyword depending on the cytometry. More commonly the
spillover matrix is calculated using a series of compensation cells or beads collected before the
experiment. If you have set of FCS files with one file per fluorochrome as well as an unstained FCS
file you can use the spillover method for flowSets to automatically calculate a spillover matrix.

The compensation class is essentially a wrapper around a matrix that allows for transformed
parameters and method dispatch.

Value

A compensation object for the constructor.

A flowFrame or flowSet for the compensate methods.

Slots

spillover Object of class matrix; the spillover matrix.
compensationId Object of class character. An identifier for the object.

parameters Object of class parameters. The flow parameters for which the compensation is
defined. This can also be objects of class transform, in which case the compensation is
performed on the compensated parameters.

Objects from the Class

Objects should be created using the constructor compensation(). See the Usage and Arguments
sections for details.

Methods

compensate signature(x = "flowFrame"”, spillover = "compensation"”): Apply the compen-
sation defined in a compensation object on a flowFrame. This returns a compensated flowFrame.

Usage:
compensate(flowFrame, compensation)

compensate signature(x = "flowFrame"”, spillover = "matrix"): Apply a compensation ma-
trix to a flowFrame. This returns a compensated f1lowFrame.
Usage:
compensate(flowFrame, matrix)
compensate signature(x = "flowFrame"”, spillover = "data.frame"):Try to coerce the data. frame
to amatrix and apply that to a flowFrame. This returns a compensated f1lowFrame.
Usage:
compensate(flowFrame, data.frame)



20 compensation-class

identifier, identifier<- signature(object = "compensation"): Accessor and replacement meth-
ods for the compensationId slot.
Usage:
identifier(compensation)

identifier(compensation) <- value

parameters signature(object = "compensation”): Get the parameter names of the compensation
object. This method also tries to resolve all transforms and transformReferences before
returning the parameters as character vectors. Unresolvable references return NA.

Usage:
parameters(compensation)

show signature(object = "compensation”): Print details about the object.
Usage:
This method is automatically called when the object is printed on the screen.

Author(s)

F.Hahne, B. Ellis, N. Le Meur

See Also

spillover

Examples

## Read sample data and a sample spillover matrix

samp  <- read.flowSet(path=system.file("extdata"”, "compdata”, "data",
package="flowCore"))

cfile <- system.file("extdata”, "compdata”,"compmatrix"”, package="flowCore")

comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)

comp.mat

## compensate using the spillover matrix directly
summary (samp)

samp <- compensate(samp, comp.mat)

summary (samp)

## create a compensation object and compensate using that
comp <- compensation(comp.mat)
compensate(samp, comp)

## demo the sample-specific compensation

## create a list of comps (each element could be a

## different compensation tailored for the specific sample)

comps <- sapply(sampleNames(samp), function(sn)comp, simplify = FALSE)
# the names of comps must be matched to sample names of the flowset
compensate(samp, comps)



complementFilter-class 21

complementFilter-class
Class complementFilter

Description

This class represents the logical complement of a single filter, which is itself a filter that can be
incorporated in to further set operations. complementFilters are constructed using the prefix
unary set operator "!" with a single filter operand.

Slots

filters Object of class "1ist”, containing the component filters.

filterId Object of class "character” referencing the filter applied.

Extends

Class "filter"”, directly.

Author(s)
B. Ellis

See Also

filter, setOperationFilter

Other setOperationFilter classes: intersectFilter-class, setOperationFilter-class, subsetFilter-class,
unionFilter-class

concreteFilter-class Class "concreteFilter”

Description

The concreteFilter serves as a base class for all filters that actually implement a filtering process.
At the moment this includes all filters except filterReference, the only non-concrete filter at
present.

Slots

filterId The identifier associated with this class.

Objects from the Class

Objects of this class should never be created directly. It serves only as a point of inheritance.



22

Extends

Class "filter”, directly.

Author(s)
B. Ellis

See Also

parameterFilter

decompensate

CytoExploreR_exports  CytoExploreR exports

Description

Exported wrappers of internal functions for use by CytoExploreR

Usage
CytoExploreR_.estimateLogicle(x, channels, ...)
decompensate Decompensate a flowFrame
Description

Reverse the application of a compensation matrix on a flowFrame

Usage
## S4 method for signature 'flowFrame,matrix’

decompensate(x, spillover)

## S4 method for signature 'flowFrame,compensation'’
decompensate(x, spillover)

Arguments

X flowFrame.

spillover matrix or data.frame or a compensation object
Value

a decompensated flowFrame



dglpolynomial-class 23

Examples

library(flowCore)
f = list.files(system.file("extdata"”,
"compdata”,
"data",
package="flowCore"),
full.name=TRUE)[1]
f = read.FCS(f)
spill = read.csv(system.file("extdata”,
"compdata”, "compmatrix",
package="flowCore"),
,sep="\t",skip=2)
colnames(spill) = gsub("\\.","-",colnames(spill))
f.comp = compensate(f,spill)
f.decomp = decompensate(f.comp,as.matrix(spill))
sum(abs (f@exprs-f.decomp@exprs))
all.equal(decompensate(f.comp,spill)@exprs,decompensate(f.comp,as.matrix(spill))@exprs)
all.equal(f@exprs,decompensate(f.comp,spill)@exprs)

dglpolynomial-class Class "dglpolynomial"

Description

dglpolynomial allows for scaling,linear combination and translation within a single transformation
defined by the function

f(parametery, ..., parameter,, ai, ..., an,b) = b+ X', a; * parameter;

Slots

.Data Object of class "function”.

parameters Object of class "parameters” —the flow parameters that are to be transformed.
a Object of class "numeric” — coefficients of length equal to the number of flow parameters.
b Object of class "numeric” — coefficient of length 1 that performs the translation.

transformationId Object of class "character” unique ID to reference the transformation.

Objects from the Class

Objects can be created by using the constructor dg1polynomial (parameter,a,b, transformationId).

Extends

Class "transform”, directly.
Class "transformation”, by class "transform", distance 2.

Class "characterOrTransformation”, by class "transform", distance 3.



24 each_col

Note

The transformation object can be evaluated using the eval method by passing the data frame as an

argument.The transformed parameters are returned as a matrix with a single column.(See example
below)

Author(s)
Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

ratio,quadratic,squareroot

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, exponential-class,
hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,

sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata”,"0877408774.B08",
package="flowCore"))

dg1<-dglpolynomial (c("FSC-H","SSC-H"),a=c(1,2),b=1, transformationId="dgl1")
transOut<-eval (dgl1) (exprs(dat))

each_col Methods to apply functions over flowFrame margins

Description

Returns a vector or array of values obtained by applying a function to the margins of a flowFrame.
This is equivalent of running apply on the output of exprs(flowFrame).

Usage
each_col(x, FUN, ...)
each_row(x, FUN, ...)
Arguments
X Object of class flowFrame.
FUN the function to be applied. In the case of functions like '+, *%*%’, etc., the

function name must be backquoted or quoted.

optional arguments to "FUN’.



EHtrans-class

Author(s)
B. Ellis, N. LeMeur, F. Hahne

See Also

apply

Examples

samp <- read.FCS(system.file("extdata"”, "0877408774.B08", package="flowCore"),

transformation="1linearize")
each_col(samp, summary)

25

EHtrans-class Class "EHtrans"

Description
EH transformation of a parameter is defined by the function

(Parameter b x parameter

EH (parameter, a,b) = 10 @ + ———— — 1, parameter >=10

a

—parameter b x parameter
_q(Fremgmees) | DX PATACLET e ameter < 0

Slots

.Data Object of class "function”.
a Object of class "numeric” — numeric constant greater than zero.
b Object of class "numeric” — numeric constant greater than zero.

parameters Object of class "transformation” — flow parameter to be transformed.

transformationId Object of class "character” —unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor EHtrans (parameters,a,b, transformationId)

Extends

Class "singleParameterTransform”, directly.
Class "transform”, by class "singleParameterTransform", distance 2.

Class "transformation”, by class "singleParameterTransform", distance 3.

Class "characterOrTransformation”, by class "singleParameterTransform", distance 4.



26 ellipsoidGate-class

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument.The transformed parameters are returned as a matrix with a single column. (See example
below)

Author(s)
Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

hyperlog

Other mathematical transform classes: asinht-class, asinhtGml2-class, dglpolynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",

package="flowCore"))
eh1<-EHtrans("FSC-H",a=1250,b=4, transformationId="eh1")
transOut<-eval (eh1) (exprs(dat))

ellipsoidGate-class Class "ellipsoidGate"

Description

Class and constructor for n-dimensional ellipsoidal filter objects.

Usage

ellipsoidGate(..., .gate, mean, distance=1, filterId="defaultEllipsoidGate")
Arguments

filterId An optional parameter that sets the filterId of this gate.

.gate A definition of the gate via a covariance matrix.

mean Numeric vector of equal length as dimensions in . gate.



ellipsoidGate-class 27

distance Numeric scalar giving the Mahalanobis distance defining the size of the ellipse.
This mostly exists for compliance reasons to the gatingML standard as mean and
gate should already uniquely define the ellipse. Essentially, distance is merely
a factor that gets applied to the values in the covariance matrix.

You can also directly describe the covariance matrix through named arguments,
as described below.

Details

A convenience method to facilitate the construction of a ellipsoid filter objects. Ellipsoid gates
in n dimensions (n >= 2) are specified by a a covarinace matrix and a vector of mean values giving
the center of the ellipse.

This function is designed to be useful in both direct and programmatic usage. In the first case,
simply describe the covariance matrix through named arguments. To use this function programmat-
ically, you may pass a covarince matrix and a mean vector directly, in which case the parameter
names are the colnames of the matrix.

Value

Returns a ellipsoidGate object for use in filtering flowFrames or other flow cytometry objects.

Slots

mean Objects of class "numeric”. Vector giving the location of the center of the ellipse in n di-
mensions.

cov Objects of class "matrix”. The covariance matrix defining the shape of the ellipse.
distance Objects of class "numeric”. The Mahalanobis distance defining the size of the ellipse.
parameters Object of class "character”, describing the parameter used to filter the f1lowFrame.

filterId Object of class "character”, referencing the filter.

Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter"”, by class parameterFilter, distance 3.

Objects from the Class

Objects can be created by calls of the form new("ellipsoidGate”, .. .) or by using the constructor
ellipsoidGate. Using the constructor is the recommended way.

Methods

%in% signature(x ="flowFrame"”, table = "ellipsoidGate"”): The workhorse used to eval-
uate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "ellipsoidGate"”): Print information about the filter.



28 estimateMedianLogicle

Note

See the documentation in the flowViz package for plotting of ellipsoidGates.

Author(s)
F.Hahne, B. Ellis, N. LeMeur

See Also

flowFrame, polygonGate, rectangleGate, polytopeGate, filter for evaluation of rectangleGates
and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

Other Gate classes: polygonGate-class, polytopeGate-class, quadGate-class, rectangleGate-class

Examples

## Loading example data
dat <- read.FCS(system.file("extdata”,"0@877408774.B08",
package="flowCore"))

## Defining the gate

cov <- matrix(c(6879, 3612, 3612, 5215), ncol=2,
dimnames=1list(c("FSC-H", "SSC-H"), c("FSC-H", "SSC-H")))

mean <- c("FSC-H"=430, "SSC-H"=175)

eg <- ellipsoidGate(filterId= "myEllipsoidGate”, .gate=cov, mean=mean)

## Filtering using ellipsoidGates
fres <- filter(dat, eg)

fres

summary (fres)

## The result of ellipsoid filtering is a logical subset
Subset(dat, fres)

## We can also split, in which case we get those events in and those
## not in the gate as separate populations
split(dat, fres)

##ellipsoidGate can be converted to polygonGate by interpolation
pg <- as(eg, "polygonGate")
Pg

estimateMedianLogicle Estimates a common logicle transformation for a flowSet.

Description

Of the negative values for each channel specified, the median of the specified quantiles are used.



exponential-class 29

Usage

estimateMedianLogicle(flow_set, channels, m = 4.5, q = 0.05)

Arguments

flow_set object of class "flowSet’
channels character vector of channels to transform
m TODO - default value from .1gclTrans

q quantile

Value

TODO

exponential-class Class "exponential”

Description
Exponential transform class, which represents a transformation given by the function

1

_ eparameter/b x =

f(parameter, a,b)
a

Slots

.Data Object of class "function”.

a Object of class "numeric"” — non-zero constant.

b Object of class "numeric”- non-zero constant.

parameters Object of class "transformation” — flow parameter to be transformed.

transformationId Object of class "character” —unique ID to reference the transformation

Objects from the Class

Objects can be created by calls to the constructorexponential (parameters,a,b).

Extends

Class "singleParameterTransform”, directly.
Class "transform”, by class "singleParameterTransform", distance 2.
Class "transformation”, by class "singleParameterTransform", distance 3.

Class "characterOrTransformation”, by class "singleParameterTransform", distance 4.



30 expressionFilter-class

Note
The exponential transformation object can be evaluated using the eval method by passing the data
frame as an argument.The transformed parameters are returned as a matrix with a single column
Author(s)
Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

logarithm

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dglpolynomial-class,
hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,

sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata"”,"0877408774.B08",
package="flowCore"))
expl<-exponential (parameters="FSC-H",6a=1,b=37,transformationId="exp1")
transOQut<-eval (exp1) (exprs(dat))

expressionFilter-class
Class "expressionFilter”

Description

A filter holding an expression that can be evaluated to a logical vector or a vector of factors.

Usage
expressionFilter(expr, ..., filterId="defaultExpressionFilter")
char2ExpressionFilter(expr, ..., filterId="defaultExpressionFilter")
Arguments
filterId An optional parameter that sets the filterId of this filter. The object can
later be identified by this name.
expr A valid R expression or a character vector that can be parsed into an expression.

Additional arguments that are passed to the evaluation environment of the ex-
pression.



expressionFilter-class 31

Details

The expression is evaluated in the environment of the flow cytometry values, hence the param-
eters of a flowFrame can be accessed through regular R symbols. The convenience function
char2ExpressionFilter exists to programmatically construct expressions.

Value
Returns a expressionFilter object for use in filtering flowFrames or other flow cytometry ob-
jects.

Slots

expr The expression that will be evaluated in the context of the flow cytometry values.
args An environment providing additional parameters.
deparse A character scalar of the deparsed expression.

filterId The identifier of the filter.

Extends

Class "concreteFilter”, directly.

Class "filter”, by class concreteFilter, distance 2.

Objects from the Class
Objects can be created by calls of the form new("expressionFilter”, ...), using the expressionFilter
constructor or, programmatically, from a character string using the char2ExpressionFilter func-
tion.

Methods

%in% signature(x ="flowFrame"”, table = "expressionFilter"): The workhorse used to
evaluate the gate on data. This is usually not called directly by the user, but internally by calls
to the filter methods.

show signature(object = "expressionFilter"”): Print information about the gate.

Author(s)

F. Hahne, B. Ellis

See Also

flowFrame, filter for evaluation of sampleFilters and split and Subsetfor splitting and sub-
setting of flow cytometry data sets based on that.



32 FCSTransTransform

Examples

## Loading example data
dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

#Create the filter
ef <- expressionFilter("FSC-H* > 200, filterId="myExpressionFilter")
ef

## Filtering using sampeFilters
fres <- filter(dat, ef)

fres

summary (fres)

## The result of sample filtering is a logical subset
newDat <- Subset(dat, fres)
all(exprs(newDat)[,"FSC-H"] > 200)

## We can also split, in which case we get those events in and those
## not in the gate as separate populations
split(dat, fres)

## Programmatically construct an expression

dat <- dat[,-8]

r <- range(dat)

cn <- paste("™", colnames(dat), , sep="")

exp <- paste(cn, ">", r[1,]1, "&", cn, "<", r[2,], collapse=" & ")
ef2 <- char2ExpressionFilter(exp, filterId="myExpressionFilter")

nen

ef2
fres2 <- filter(dat, ef2)
fres2
summary (fres2)
FCSTransTransform Computes a transform using the ’iplogicle’ function
Description

Transforms FCS data using the iplogicle function from FCSTrans by Quian et al. The core func-
tionality of FCSTrans has been imported to produce transformed FCS data rescaled and truncated
as produced by FCSTrans. The w parameter is estimated by iplogicle automatically, then makes
acall to iplogicore which in turn uses the logicle transform code of Wayne Moore.

Usage

FCSTransTransform(transformationId = "defaultFCSTransTransform”,
channelrange = 2718, channeldecade = 4.5,
range = 4096, cutoff = -111, w = NULL, rescale = TRUE)



FCSTransTransform 33

Arguments

transformationId
A name to assign to the transformation. Used by the transform/filter routines.

channelrange is the range of the data. By default, 218 = 262144.

channeldecade is the number of logarithmic decades. By default, it is set to 4.5.

range the target resolution. The default value is 2212 = 4096.
cutoff a threshold below which the logicle transformation maps values to 0.
w the logicle width. This is estimated by iplogicle by default. Details can be

found in the Supplementary File from Quian et al.

rescale logical parameter whether or not the data should be rescaled to the number of
channels specified in range. By default, the value is TRUE but can be set to
FALSE if you want to work on the transformed scale.

Details

For the details of the FCSTrans transformation, we recommend the excellent Supplementary File
that accompanies Quian et al. (2012): http://onlinelibrary.wiley.com/doi/10.1002/cyto.
a.22037/suppinfo

Author(s)

Wayne Moore, N Gopalakrishnan

References

Y Quian, Y Liu, J Campbell, E Thompson, YM Kong, RH Scheuermann; FCSTrans: An open
source software system for FCS file conversion and data transformation. Cytometry A, 2012

See Also

inverselLogicleTransform, estimatelLogicle, logicleTransform

Examples

data(GvHD)

samp <- GvHD[[1]]

## User defined logicle function

lgcl <- transformList(c('FL1-H', 'FL2-H'), FCSTransTransform())
after <- transform(samp, lgcl)


http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22037/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22037/suppinfo

34 filter-class

filter-and-methods Take the intersection of two filters

Description

There are two notions of intersection in flowCore. First, there is the usual intersection boolean
operator & that has been overridden to allow the intersection of two filters or of a filter and a list
for convenience. There is also the %&% or %subset?% operator that takes an intersection, but with
subset semantics rather than simple intersection semantics. In other words, when taking a subset,
calculations from summary and other methods are taken with respect to the right hand filter. This
primarily affects calculations, which are ordinarily calculated with respect to the entire population
as well as data-driven gating procedures which will operate only on elements contained by the right
hand filter. This becomes especially important when using filters such as norm2Filter

Usage

el %&% e2
el %subset% e2

Arguments

el, e2 filter objects or lists of filter objects

Author(s)

B. Ellis

filter-class A class for representing filtering operations to be applied to flow data.

Description
The filter class is the virtual base class for all filter/gating objects in flowCore. In general you
will want to subclass or create a more specific filter.

Slots

filterId A character vector that identifies this filter. This is typically user specified but can be
automatically deduced by certain filter operations, particularly boolean and set operations.



filter-class 35

Objects from the Class

All filter objects in flowCore should be instantiated through their constructors. These are func-
tions that share the same name with the respective filter classes. E.g., rectangleGate() is the
constructor function for rectangular gates, and kmeansFilter () creates objects of class kmeansFilter.
Usually these constructors can deal with various different inputs, allowing to utilize the same func-
tion in different programmatic or interactive settings. For all filters that operate on specific flow
parameters (i.e., those inheriting from parameterFilter), the parameters need to be passed to the
constructor, either as names or colnames of additional input arguments or explicitly as separate
arguments. See the documentation of the respective filter classes for details. If parameters are
explicitly defined as separate arguments, they may be of class character, in which case they will
be evaluated literally as colnames in a f1owF rame, or of class transform, in which case the filtering
is performed on a temporarily transformed copy of the input data. See here for details.

Methods

%in% Used in the usual way this returns a vector of values that identify which events were accepted
by the filter. A single filter may encode several populations so this can return either a logical
vector, a factor vector or a numeric vector of probabilities that the event is accepted by the
filter. Minimally, you must implement this method when creating a new type of filter

&, |, ! Two filters can be composed using the usual boolean operations returning a filter class of
a type appropriate for handling the operation. These methods attempt to guess an appropriate
filterId for the new filter

%subset%, %&% Defines a filter as being a subset of another filter. For deterministic filters the results
will typically be equivalent to using an \& operation to compose the two filters, though sum-
mary methods will use subset semantics when calculating proportions. Additionally, when the
filter is data driven, such as norm2Filter, the subset semantics are applied to the data used to
fit the filter possibly resulting in quite different, and usually more desirable, results.

%on% Used in conjunction with a transformList to create a transformFilter. This filter is
similar to the subset filter in that the filtering operation takes place on transformed values
rather than the original values.

filter A more formal version of %in%, this method returns a filterResult object that can be
used in subsequent filter operations as well as providing more metadata about the results of
the filtering operation. See the documenation for filter methods for details.

summarizeFilter When implementing a new filter this method is used to update the filterDetails
slot of a filterResult. It is optional and typically only needs to be implemented for data-
driven filters.

Author(s)

B. Ellis, P.D. Haaland and N. LeMeur

See Also

transform, filter



36 filter-methods

filter-in-methods Filter-specific membership methods

Description

Membership methods must be defined for every object of type filter with respect to a f1lowFrame
object. The operation is considered to be general and may return a logical, numeric or factor
vector that will be handled appropriately. The ability to handle logical matrices as well as vectors
is also planned but not yet implemented.

Usage

X %in% table

Arguments
X a flowFrame
table an object of type filter or filterResult or one of their derived classes, rep-
resenting a gate, filter, or result to check for the membership of x
Value

Vector of type logical, numeric or factor depending on the arguments

Author(s)
F.Hahne, B. Ellis

filter-methods Filter FCS files

Description

These methods link filter descriptions to a particular set of flow cytometry data allowing for the
lightweight calculation of summary statistics common to flow cytometry analysis.

Usage

filter(x, filter, method = c("convolution”, "recursive"”),
sides = 2L, circular = FALSE, init = NULL)

Arguments
X Object of class flowFrame or flowSet.
filter An object of class filter or a named list filters.

method, sides, circular, init
These arguments are not used.



filter-methods 37

Details

The filter method conceptually links a filter description, represented by a filter object, to a
particular flowFrame. This is accomplished via the filterResult object, which tracks the linked
frame as well as caching the results of the filtering operation itself, allowing for fast calculation of
certain summary statistics such as the percentage of events accepted by the filter. This method ex-
ists chiefly to allow the calculation of these statistics without the need to first Subset a flowFrame,
which can be quite large.

When applying on a flowSet, the filter argument can either be a single filter object, in which
case it is recycled for all frames in the set, or a named list of filter objects. The names are
supposed to match the frame identifiers (i.e., the output of sampleNames(x) of the flowSet. If
some frames identifiers are missing, the particular frames are skipped during filtering. Accordingly,
all filters in the filter list that can’t be mapped to the flowSet are ignored. Note that all filter
objects in the list must be of the same type, e.g. rectangleGates.

Value

A filterResult objectorafilterResultList objectif x is a flowSet. Note that filterResult
objects are themselves filters, allowing them to be used in filter expressions or Subset operations.

Author(s)
F Hahne, B. Ellis, N. Le Meur

See Also

Subset, filter, filterResult

Examples

## Filtering a flowFrame

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
rectGate <- rectangleGate(filterId="nonDebris"”,"FSC-H"=c(200,Inf))

fr <- filter(samp,rectGate)

class(fr)

summary (fr)

## filtering a flowSet
data(GvHD)

foo <- GVvHD[1:3]

fr2 <- filter(foo, rectGate)
class(fr2)

summary (fr2)

## filtering a flowSet using different filters for each frame
rg2 <- rectangleGate(filterId="nonDebris"”,"FSC-H"=c(300,Inf))
rg3 <- rectangleGate(filterId="nonDebris"”,"FSC-H"=c(400,Inf))
flist <- list(rectGate, rg2, rg3)

names(flist) <- sampleNames(foo)

fr3 <- filter(foo, flist)



38 filterDetails-methods

filter-on-methods Methods for Function %on% in Package ‘flowCore’

Description

This operator is used to construct a transformFilter that first applies a transformList to the
data before applying the filter operation. You may also apply the operator to a flowFrame or
flowSet to obtain transformed values specified in the list.

Usage

el %on% e2

Arguments

el afilter, transform, or transformList object

e2 a transform, transformList, flowFrame, or flowSet object

Author(s)
B. Ellis

Examples

samp <- read.FCS(system.file("extdata”,"0877408774.B08", package="flowCore"))
plot(transform("FSC-H"=1log, "SSC-H"=log) %on% samp)

rectangle <- rectangleGate(filterId="rectangleGatel"”,"FSC-H"=c(4.5, 5.5))
sampFiltered <- filter(samp, rectangle %on% transform(”"FSC-H"=log, "SSC-H"=log))
res <- Subset(samp, sampFiltered)

plot(transform("FSC-H"=1log, "SSC-H"=log) %on% res)

filterDetails-methods Obtain details about a filter operation

Description

A filtering operation captures details about its metadata and stores it in a filterDetails slotin a
filterResult object that is accessed using the filterDetails method. Each set of metadata is
indexed by the filterId of the filter allowing for all the metadata in a complex filtering operation
to be recovered after the final filtering.



filterList-class 39

Methods

filterDetails(result = "filterResult", filterId = ""'missing'') When no particular filterId is spec-
ified all the details are returned

filterDetails(result = "'filterResult'', filterId = ""ANY'') You can also obtain a particular subset of
details

Author(s)

B. Ellis, P.D. Haaland and N. LeMeur

filterList-class Class "filterList"

Description

Container for a list of filter objects. The class mainly exists for method dispatch.

Usage

filterList(x, filterId=identifier(x[[111))

Arguments
X A list of filter objects.
filterId The global identifier of the filter list. As default, we take the filterld of the first
filter object in x.
Value

A filterList object for the constructor.

Slots

.Data Object of class "1ist". The class directly extends 1ist, and this slot holds the list data.
filterId Object of class "character”. The identifier for the object.

Objects from the Class

Objects are created from regular lists using the constructor filterList.

Extends

Class "1list", from data part.



40 filterReference-class

Methods

show signature(object = "filterList"): Print details about the object.

identifier, identifier<- signature(object = "filterList"): Accessor and replacement method
for the object’s filterld slot.

Author(s)
Florian Hahne

See Also

filter,

Examples

f1 <- rectangleGate(FSC=c(100,200), filterId="testFilter")
f2 <- rectangleGate(FSC=c(200,400))

fl <- filterList(list(a=f1, b=f2))

fl

identifier(fl)

filterReference-class Class filterReference

Description
A reference to another filter inside a reference. Users should generally not be aware that they are
using this class.

Slots

name The R name of the referenced filter.
env The environment where the filter must live.

filterId The filterld, not really used since you always resolve.

Objects from the Class

Objects are generally not created by users so there is no constructor function.

Extends

Class "filter"”, directly.

Author(s)
B. Ellis



filterResult-class 41

filterResult-class Class "filterResult”

Description

Container to store the result of applying a filter on a flowFrame object

Slots

frameId Object of class "character” referencing the flowFrame object filtered. Used for sanity
checking.

filterDetails Object of class "1ist" describing the filter applied.
filterId Object of class "character” referencing the filter applied.

Extends

Class "filter"”, directly.

Methods

== test equality

Author(s)
B. Ellis, N. LeMeur

See Also

filter, "logicalFilterResult”, "multipleFilterResult”, "randomFilterResult”

Examples

showClass("filterResult"”)

filterResultList-class
Class "filterResultList"

Description

Container to store the result of applying a filter on a flowSet object



42 filterResultList-class

Slots

.Data Object of class "1ist". The class directly extends 1ist, and this slot holds the list data.
frameId Object of class "character” The IDs of the flowFrames in the filtered flowSet.

filterDetails Object of class "list"”. Since filterResultList inherits from filterResult,
this slot has to be set. It contains only the input filter.

filterId Object of class "character”. The identifier for the object.

Objects from the Class

Objects are created by applying a filter on a flowSet. The user doesn’t have to deal with manual
object instantiation.

Extends

Class "1list"”, from data part. Class "filterResult”, directly. Class "concreteFilter”, by class
"filterResult", distance 2. Class "filter", by class "filterResult", distance 3.

Methods
[ signature(x = "filterResultlList"”, i = "ANY"): Subset to filterResultList.
[[ signature(x ="filterResultList"”, i ="ANY"): Subset to individual filterResult.
names signature(x ="filterResultlList"): Accessor to the frameld slot.

parameters signature(object = "filterResultList"”): Return parameters on which data has
been filtered.

show signature(object = "filterResultList"): Print details about the object.

split signature(x = "flowSet"”, f = "filterResultList"”): Split a flowSet based on the re-
sults in the filterResultlIst. See split for details.

summary signature(object = "filterResultList"): Summarize the filtering operation. This
creates a filterSummarylList object.

Author(s)
Florian Hahne

See Also
filter, filterResult, logicalFilterResult, multipleFilterResult, randomFilterResult

Examples

library(flowStats)

## Loading example data and creating a curviFilter

data(GvHD)

dat <- GvHD[1:3]

clf <- curviFilter(filterId="myCurviFilter", x=list("FSC-H"), bwFac=2)

## applying the filter



filters-class 43

fres <- filter(dat, cif)
fres

## subsetting the list
fres[[1]]
fres[1:2]

## details about the object
parameters(fres)
names(fres)

summary (fres)

## splitting based on the filterResults
split(dat, fres)

filters-class Class "filters" and "filtersList"

Description

The filters class is the container for a list of filter objects.

The filtersList class is the container for a list of filters objects.

Usage

filters(x)

filtersList(x)

Arguments

X Alistof filter or filters objects.

Details

The filters class mainly exists for displaying multiple filters/gates on one single panel(flowFrame)
of xyplot. Note that it is different from filterList class which is to be applied to a flowSet. In
other words, filter objects of a fliterList are to be applied to different flowFrames. How-
ever,all of filter objects of a filters object are for one single flowFrame, more specifically for
one pair of projections(parameters).So these filters should share the common parameters.

And filtersList is alist of filters objects, which are to be applied to a flowSet.

Value

A filters or filterslList object from the constructor



44 filterSummary-class

Slots

.Data Object of class "1ist". The class directly extends 1ist, and this slot holds the list data.

Extends

Class "list"”

Objects from the Class

Objects are created from regular lists using the constructors filters and filtersList:
filters(x)
filtersList(x)

Author(s)
Mike Jiang

See Also

filter, filterList

filterSummary-class Class "filterSummary"

Description

Class and methods to handle the summary information of a gating operation.

Usage
## S4 method for signature 'filterResult'
summary (object, ...)
Arguments
object An object inheriting from class filterResult which is to be summarized.

Further arguments that are passed to the generic.

Details
Calling summary on a filterResult object prints summary information on the screen, but also
creates objects of class filterSummary for computational access.

Value

An object of class filterSummary for the summary constructor, a named list for the subsetting
operators. The $ operator returns a named vector of the respective value, where each named element
corresponds to one sub-population.



filterSummary-class 45

Slots

name Object of class "character” The name(s) of the populations created in the filtering operation.
For a logicalFilterResult this is just a single value; the name of the link{filter}.

true Object of class "numeric”. The number of events within the population(s).
count Object of class "numeric”. The total number of events in the gated flowFrame.

p Object of class "numeric” The percentage of cells in the population(s).

Objects from the Class

Objects are created by calling summary on a 1ink{filterResult} object. The user doesn’t have
to deal with manual object instantiation.

Methods

[[ signature(x="filterSummary"”, i = "numeric"): Subset the filterSummary to a single
population. This only makes sense for multipleFilterResults. The output is a list of
summary statistics.

[[ signature(x ="filterSummary”, i = "character"”): see above

$ signature(x ="filterSummary”, name = "ANY"): A list-like accessor to the slots and more.
Valid values are n and count (those are identical), true and in (identical), false and out
(identical), name, p and q (1-p).

coerce signature(from="filterSummary”, to= "data.frame"): Coerce objectto data.frame.
length signature(x = "filterSummary"): The number of populations in the fitlerSummary.
names signature(x = "filterSummary"”): The names of the populations in the filterSummary.
print signature(x ="filterSummary"): Print details about the object.

show signature(object = "filterSummary"): Print details about the object.

toTable signature(x = "filterSummary"): Coerce object to data. frame.

Author(s)
Florian Hahne, Byron Ellis

See Also

filterResult, logicalFilterResult,multipleFilterResult, flowFrame filterSummarylList

Examples

library(flowStats)

## Loading example data, creating and applying a curviFilter

dat <- read.FCS(system.file("extdata”,"0877408774.B08",
package="flowCore"))

clf <- curviFilter(filterId="myCurviFilter", x=list("FSC-H"), bwFac=2)
fres <- filter(dat, cif)



46 filterSummaryList-class

## creating and showing the summary
summary (fres)
s <- summary(fres)

## subsetting
s[[1]1]
s[["peak 2"1]

##accessing details
s$true

s$n

toTable(s)

filterSummarylList-class
Class "filterSummaryList"

Description

Class and methods to handle summary statistics for from filtering operations on whole flowSets.

Arguments
object An object of class. filterResultList which is to be summarized.
Further arguments that are passed to the generic.
Details

Calling summary on a filterResultList object prints summary information on the screen, but
also creates objects of class filterSummaryList for computational access.

Value

An object of class filterSummaryList.

Slots

.Data Object of class "1ist". The class directly extends 1ist, and this slot holds the list data.

Usage

summary(object, ...)

Objects from the Class

Objects are created by calling summary on a link{filterResultList} object. The user doesn’t
have to deal with manual object instantiation.



flowFrame-class 47

Extends

Class "list”, from .Data part.

Methods

toTable signature(x = "filterSummaryList"): Coerce object to data.frame. Additional fac-
tors are added to indicate list items in the original object.

Author(s)

Florian Hahne

See Also

filterResult, filterResultlList, logicalFilterResult,multipleFilterResult, flowFrame
filterSummary

Examples

library(flowStats)

## Loading example data, creating and applying a curviFilter
data(GvHD)

dat <- GvHD[1:3]

clf <- curviFilter(filterId="myCurviFilter"”, x=list("FSC-H"), bwFac=2)
fres <- filter(dat, cif)

## creating and showing the summary
summary(fres)

s <- summary(fres)

## subsetting

sCL1]]
##accessing details
toTable(s)
flowFrame-class ‘flowFrame’: a class for storing observed quantitative properties for
a population of cells from a FACS run
Description

This class represents the data contained in a FCS file or similar data structure. There are three parts
of the data:

1. anumeric matrix of the raw measurement values with rows=events and columns=parameters



48 flowFrame-class

2. annotation for the parameters (e.g., the measurement channels, stains, dynamic range)

3. additional annotation provided through keywords in the FCS file

Details

Objects of class flowFrame can be used to hold arbitrary data of cell populations, acquired in flow-
cytometry.

FCS is the Data File Standard for Flow Cytometry, the current version is FCS 3.0. See the vignette
of this package for additional information on using the object system for handling of flow-cytometry
data.

Slots

exprs Object of class matrix containing the measured intensities. Rows correspond to cells,
columns to the different measurement channels. The colnames attribute of the matrix is sup-
posed to hold the names or identifiers for the channels. The rownames attribute would usually
not be set.

parameters AnAnnotatedDataFrame containing information about each column of the flowFrame.
This will generally be filled in by read. FCS or similar functions using data from the FCS key-
words describing the parameters.

description A list containing the meta data included in the FCS file.

Creating Objects

Objects can be created using
new("flowFrame”,

exprs=...., Object of class matrix

parameters = ...., Object of class AnnotatedDataFrame
description=...., Object of class list

)

or the constructor f1lowFrame, with mandatory arguments exprs and optional arguments parameters
and description.

flowFrame(exprs, parameters, description=1ist())

To create a flowFrame directly from an FCS file, use function read.FCS. This is the recommended
and safest way of object creation, since read.FCS will perform basic data quality checks upon
import. Unless you know exactly what you are doing, creating objects using new or the constructor
is discouraged.

Methods

There are separate documentation pages for most of the methods listed here which should be con-
sulted for more details.

[ Subsetting. Returns an object of class flowFrame. The subsetting is applied to the exprs slot,
while the description slot is unchanged. The syntax for subsetting is similar to that of
data.frames. In addition to the usual index vectors (integer and logical by position, character
by parameter names), flowFrames can be subset via filterResult and filter objects.



flowFrame-class 49
Usage:
flowFramel[i,j]
flowFrame[filter,]
flowFrame[filterResult,]

Note that the value of argument drop is ignored when subsetting flowFrames.

$ Subsetting by channel name. This is similar to subsetting of columns of data.frames, i.e.,
frame$FSC.H is equivalent to frame[, "FSC.H"]. Note that column names may have to be
quoted if they are no valid R symbols (e.g. frame$"FSC-H").

exprs, exprs<- Extract or replace the raw data intensities. The replacement value must be a nu-

meric matrix with colnames matching the parameter definitions. Implicit subsetting is allowed

(i.e. less columns in the replacement value compared to the original flowFrame, but all have
to be defined there).

Usage:
exprs(flowFrame)
exprs(flowFrame) <- value
head, tail Show first/last elements of the raw data matrix
Usage:
head(flowFrame)
tail(flowFrame)

description, description<- Extract the whole list of annotation keywords and their corresponding
values or replace values by keyword (description<- is equivalent to keyword<-). Usually
one would only be interested in a subset of keywords, in which case the keyword method is

more appropriate. The optional hideInternal parameter can be used to exclude internal FCS
parameters starting with $.

Usage:
description(flowFrame)
description(flowFrame) <- value

keyword, keyword<- Extract ore replace one or more entries from the description slot by key-
word. Methods are defined for character vectors (select a keyword by name), functions (select

a keyword by evaluating a function on their content) and for lists (a combination of the above).
See keyword for details.

Usage:

keyword(flowFrame)
keyword(flowFrame, character)
keyword(flowFrame, list)
keyword(flowFrame) <- list(value)

parameters, parameters<- Extract parameters and return an object of class AnnotatedDataFrame,

or replace such an object. To access the actual parameter annotation, use pData(parameters(frame)).
Replacement is only valid with AnnotatedDataFrames containing all varLabels name, desc,

range, minRange and maxRange, and matching entries in the name column to the colnames of
the exprs matrix. See parameters for more details.

Usage:

parameters(flowFrame)

parameters(flowFrame) <- value



50 flowFrame-class

show Display details about the flowFrame object.

summary Return descriptive statistical summary (min, max, mean and quantile) for each channel
Usage:

summary (flowFrame)

plot Basic plots for flowFrame objects. If the object has only a single parameter this produces a
histogram. For exactly two parameters we plot a bivariate density map (see smoothScatter
and for more than two parameters we produce a simple splom plot. To select specific pa-
rameters from a flowFrame for plotting, either subset the object or specify the parameters as
a character vector in the second argument to plot. The smooth parameters lets you toggle
between density-type smoothScatter plots and regular scatterplots. This simple method still

uses the legacy flowViz package. For far more sophisticated plotting of flow cytometry data,
see the ggcyto package.

Usage:
plot(flowFrame, ...)
plot(flowFrame, character, ...)

plot(flowFrame, smooth=FALSE, ...)
ncol, nrow, dim Extract the dimensions of the data matrix.
Usage:
ncol (flowFrame)
nrow(flowFrame)
dim(flowFrame)

featureNames, colnames, colnames<- . colnames and featureNames are synonyms, they extract
parameter names (i.e., the colnames of the data matrix) . For colnames there is also a replace-
ment method. This will update the name column in the parameters slot as well.
Usage:
featureNames (flowFrame)
colnames(flowFrame)
colnames(flowFrame) <- value
names Extract pretty formated names of the parameters including parameter descriptions.
Usage:
names (flowFrame)
identifier Extract GUID of a flowFrame. Returns the file name if no GUID is available. See
identifier for details.
Usage:
identifier(flowFrame)

range Get instrument or actual data range of the flowFame. Note that instrument dynamic range
is not necessarily the same as the range of the actual data values, but the theoretical range of
values the measurement instrument was able to capture. The values of the dynamic range will
be transformed when using the transformation methods forflowFrames.
parameters:

x: flowFrame object.

type: Range type. either "instrument" or "data". Default is "instrument"
Usage:

range(x, type = "data")



flowFrame-class 51

each_row, each_col Apply functions over rows or columns of the data matrix. These are conve-
nience methods. See each_col for details.

Usage:
each_row(flowFrame, function, ...)
each_col (flowFrame, function, ...)

transform Apply a transformation function on a flowFrame object. This uses R’s transform
function by treating the flowFrame like a regular data.frame. flowCore provides an addi-

tional inline mechanism for transformations (see %on%) which is strictly more limited than the
out-of-line transformation described here.

Usage:
transform(flowFrame, translist, ...)

filter Apply a filter object ona flowFrame object. This returns an object of class filterResult,

which could then be used for subsetting of the data or to calculate summary statistics. See
filter for details.

Usage:
filter(flowFrame, filter)

split Split flowFrame object according to a filter, a filterResult or a factor. For most types

of filters, an optional flowSet=TRUE parameter will create a flowSet rather than a simple list.
See split for details.

Usage:

split(flowFrame, filter, flowSet=FALSE, ...)
split(flowFrame, filterResult, flowSet=FALSE, ...)
split(flowFrame, factor, flowSet=FALSE, ...)

Subset Subset a flowFrame according to a filter or a logical vector. The same can be done using

the standard subsetting operator with a filter, filterResult, or a logical vector as first
argument.

Usage:
Subset(flowFrame, filter)
Subset(flowFrame, logical)

cbind2 Expand a flowFrame by the data in a numeric matrix of the same length. The matrix

must have column names different from those of the flowFrame. The additional method for
numerics only raises a useful error message.

Usage:
cbind2(flowFrame, matrix)
cbind2(flowFrame, numeric)
compensate Apply a compensation matrix (or a compensation object) on a flowFrame object.
This returns a compensated flowFrame.
Usage:

compensate(flowFrame, matrix) compensate(flowFrame, data.frame)

decompensate Reverse the application of a compensation matrix (or a compensation object) on a
flowFrame object. This returns a decompensated f1lowFrame.
Usage:

decompensate(flowFrame, matrix) decompensate(flowFrame, data.frame)



52 flowFrame-class

spillover Extract spillover matrix from description slot if present. It is equivalent to keyword(x,
c("spillover”, "SPILL", "$SPILLOVER")) Thus will simply return a list of keywords value
for "spillover", "SPILL" and "$SPILLOVER".

Usage:
spillover(flowFrame)
== Test equality between two flowFrames
<, >, <=, >= These operators basically treat the f1lowFrame as a numeric matrix.

initialize(flowFrame): Object instantiation, used by new; not to be called directly by the user.

Author(s)
F. Hahne, B. Ellis, P. Haaland and N. Le Meur

See Also

flowSet, read.FCS

Examples

## load example data
data(GvHD)
frame <- GvHD[[1]]

## subsetting
frame[1:4,]
frame[, 3]
frame[,"FSC-H"]
frame$"”SSC-H"

## accessing and replacing raw valu