Package ‘drugfindR’

January 29, 2026
Title Investigate iLINCS for candidate repurposable drugs
Version 0.99.1170

Description This package provides a convenient way to access the
LINCS Signatures available in the iLINCS database. These signatures include
Consensus Gene Knockdown Signatures, Gene Overexpression signatures and
Chemical Perturbagen Signatures. It also provides a way to enter your own
transcriptomic signatures and identify concordant and discordant signatures
in the LINCS database.

License GPL-3 + file LICENSE
Encoding UTF-8

URL https://github.com/CogDisResLab/drugfindR,
https://cogdisreslab.github.io/drugfindR/

BugReports https://github.com/CogDisResLab/drugfindR/issues
LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

biocViews FunctionalPrediction, DifferentialExpression,
GeneSetEnrichment, SingleCell, Network

Imports tibble, rlang, dplyr, purrr, readr, stringr, stats, lifecycle,
S4Vectors, httr2, curl, DFplyr

Depends R (>=4.5.0)

Suggests AnnotationDbi, BiocStyle, biocthis, codemetar, devtools,
here, httptest2, jsonlite, knitr, rmarkdown, testthat (>=
3.0.0), tidyverse, usethis

Config/testthat/edition 3
Config/testthat/parallel true
VignetteBuilder knitr

X-schema.org-applicationCategory Genomics

https://github.com/CogDisResLab/drugfindR
https://cogdisreslab.github.io/drugfindR/
https://github.com/CogDisResLab/drugfindR/issues

X-schema.org-keywords LINCS, iLINCS, drug repurposing, drug discovery,
transcriptomics, gene expression, gene knockdown, gene
overexpression, chemical perturbagen, drugfindR

X-schema.org-isPartOf https://bioconductor.org

Collate 'utilities.R' 'consensusConcordants.R' 'drugfindR-package.R'
'filterSignature.R' 'getConcordants.R' 'getSignature.R'
‘prepareSignature.R' 'investigateSignature.R'
'investigateTarget.R'

git_url https://git.bioconductor.org/packages/drugfindR

git_branch devel

git_last_commit b6ebc7f

git_last_commit_date 2026-01-28

Repository Bioconductor 3.23

Date/Publication 2026-01-28

Author Ali Sajid Imami [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3684-3539>),
Smita Sahay [aut] (ORCID: <https://orcid.org/0009-0003-4377-8963>),
Justin Fortune Creeden [aut] (ORCID:
<https://orcid.org/0000-0003-3123-8401>),
Robert Erne McCullumsmith [ctb, fnd] (ORCID:
<https://orcid.org/0000-0001-6921-7150>)

Maintainer Ali Sajid Imami <Ali.Sajid.Imami@gmail.com>

Contents

drugfindR-package
.applyDirectionFilter o oL
.applySimilarityCutoff
.applyTargetRenaming
.calculateAbsoluteThresholds,
.calculateDoubleThreshold
.calculateProportionalThreshold
.calculateSingleThreshold,
.cleanupGetConcordants
.combineConcordantsData,
.computeConsensusFromSignature
.createSignatureRequest L. L Lo
.detectSignatureDirectiono oL
.executellincsRequest Lo
.executeSignatureRequest oL oo
filterByCellLine L
.generatellincsRequest o
.groupByTargetAndSelectMax,
dlincsBaseUrl
dsValidSignatureldo

Contents

https://orcid.org/0000-0003-3684-3539
https://orcid.org/0009-0003-4377-8963
https://orcid.org/0000-0003-3123-8401
https://orcid.org/0000-0001-6921-7150

drugfindR-package 3

JoadMetadata 24
.mapToL1000WithoutPvalues, 25
.mapToL1000WithPvalues 25
prepareSignatureFileo 26
.processConsensusPipeline L 26
processllincsResponse L 27
.processllincsResponseEmpty Lo 28
.processllincsResponseError oL oL 29
.processllincsResponseSuccess oo o o 29
.processSignatureResponse L 30
.processSignatureResponseError L oL 31
.processSuccessfulResponse e 31
.processToL1000Signature o e 32
returnLibrary . . . 0oL Lo 33
returnResultso oL L 34
returnUserAgent L. Lo 35
selectAndOrderResultso 35
stopIfContainsMissingValues Lo 36
stoplfInvalidColNames L. 37
.validateConsensusConcordantsInput 38
validateFilterSignaturelnputo 39
-validateGetConcordantsInput Lo 40
2validateGetSignaturelnput L L L 41
wvalidateLibrary . . 0 0 0 oL L Lo 42
.validatePrepareSignaturelnput Lo oL 42
consensusConcordants e 43
filterSignature L L 45
getConcordants e e e e e e e 47
getSignatureo L. e e e e e e 49
investigateSignature L.l 50
investigateTarget e 52
PrepareSignature e e e e e e e e e e e e e e e 55
stopIfInvalidLibraries e 57
stopIflnvalidSignature 58
targetRename 59
validateLibraries 60
Index 61
drugfindR-package drugfindR: Drug Repurposing using Gene Expression Signatures
Description

drugfindR is a package that allows users to perform drug repurposing using gene expression sig-
natures. It uses the LINCS L1000 signatures available from iLINCS to find the most similar gene
expression signatures to the user’s input signature. It then uses the connectivity analysis to find the
most similar drugs to the user’s input signature.

4 drugfindR-package

Details

drugfindR-package

The drugfindR package allows users to perform drug repurposing using gene expression signatures.
It uses the LINCS L1000 database to find the most similar gene expression signatures to the user’s
input signature. It then uses the connectivity analysis to find the most similar drugs to the user’s
input signature.

References

1. Imami, Ali S., Sinead M. O’donovan, Justin F. Creeden, Xiaojun Wu, Hunter Eby, Cheryl
B. McCullumsmith, Kerstin Uvnas-Moberg, Robert E. McCullumsmith, and Elissar Andari.
"Oxytocin’s Anti-Inflammatory and Proimmune Functions in Covid-19: A Transcriptomic
Signature-Based Approach." Physiological Genomics, 2020. https://doi.org/10.1152/physiolgenomics.00095.2020.

2. O’Donovan, Sinead M., Ali Imami, Hunter Eby, Nicholas D. Henkel, Justin Fortune Creeden,
Sophie Asah, Xiaolu Zhang, et al. "Identification of Candidate Repurposable Drugs to Combat
COVID-19 Using a Signature-Based Approach." Scientific Reports 11, no. 1 (December 24,
2021): 4495. https://doi.org/10.1038/s41598-021-84044-9.

3. Creeden, Justin Fortune, Ali Sajid Imami, Hunter M. Eby, Cassidy Gillman, Kathryn N.
Becker, Jim Reigle, Elissar Andari, et al. "Fluoxetine as an Anti-Inflammatory Therapy
in SARS-CoV-2 Infection.” Biomedicine & Pharmacotherapy 138 (June 1, 2021): 111437.
https://doi.org/10.1016/j.biopha.2021.111437.

Author

Ali Sajid Imami

Maintainer

Ali Sajid Imami

Contributors

Smita Sahay Justin Fortune Creeden Sinead M. O’Donovan Hunter Eby

License

GNU Public License 3.0

Acknowledgements
* This work was supported by the National Institutes of Mental Health of the USA.
 This work was heavily supported by the members of the Cognitive Disorders Research Lab.

* This work was made possible by the Fulbright Scholar Program with the Fulbright Masters
Grant awarded to Ali Sajid Imami.

https://cdrl-ut.org

.applyDirectionFilter 5

Author(s)
Maintainer: Ali Sajid Imami <Ali.Sajid.Imami@gmail.com> (ORCID)

Authors:

* Smita Sahay <Smita.Sahay@rockets.utoledo.edu> (ORCID)

e Justin Fortune Creeden <Justin.Creeden@rockets.utoledo.edu> (ORCID)
Other contributors:
e Robert Erne McCullumsmith <Robert.McCullumsmith@utoledo.edu> (ORCID) [contribu-
tor, funder]

See Also
Useful links:
e https://github.com/CogDisResLab/drugfindR

e https://cogdisreslab.github.io/drugfindR/
* Report bugs at https://github.com/CogDisResLab/drugfindR/issues

.applyDirectionFilter Apply filtering based on direction and thresholds

Description

This internal function performs the actual filtering of the signature data based on the specified
direction and calculated thresholds. It implements the core filtering logic using dplyr operations.

Usage
.applyDirectionFilter(signature, thresholds, direction = "any")
Arguments
signature A data.frame-like object containing the signature data. Must have a column
named "Value_LogDiffExp" containing log fold-change values.
thresholds A named list containing:
e downThreshold: Threshold for down-regulated genes
* upThreshold: Threshold for up-regulated genes
direction Character string specifying the filtering direction. Must be one of: * "up": Keep

only up-regulated genes (logFC >= upThreshold) * "down": Keep only down-
regulated genes (logFC <= downThreshold) * "any": Keep both up- and down-
regulated genes (logFC >= upThreshold OR logFC <= downThreshold)

https://orcid.org/0000-0003-3684-3539
https://orcid.org/0009-0003-4377-8963
https://orcid.org/0000-0003-3123-8401
https://orcid.org/0000-0001-6921-7150
https://github.com/CogDisResLab/drugfindR
https://cogdisreslab.github.io/drugfindR/
https://github.com/CogDisResLab/drugfindR/issues

6 .applySimilarityCutoff

Details
The filtering logic depends on the direction parameter:

e "up": Retains genes where Value_LogDiffExp >= upThreshold
* "down": Retains genes where Value_LogDiffExp <= downThreshold
* "any": Retains genes where Value_LogDiffExp >= upThreshold OR Value_LogDiffExp <= downThreshold

The function uses dplyr::filter with rlang: : .data for non-standard evaluation, ensuring com-
patibility with different data frame types and avoiding issues with variable scoping.

Value

A tibble containing the filtered signature data with the same structure as the input but including only
rows that meet the filtering criteria.

Examples

Not run:
Create sample signature data
signature <- data.frame(
signaturelID = rep("TEST", 10),
Name_GeneSymbol = paste@("GENE", 1:10),
Value_LogDiffExp = c(-3, -2, -1, -0.5, @, 0.5, 1, 2, 3, 4)
)

Define thresholds
thresholds <- list(downThreshold = -1.5, upThreshold = 1.5)

Filter for up-regulated genes only
up_filtered <- .applyDirectionFilter(signature, "up", thresholds)
Returns genes with logFC >= 1.5 (GENE8, GENE9, GENE1Q)

Filter for down-regulated genes only
down_filtered <- .applyDirectionFilter(signature, "down", thresholds)
Returns genes with logFC <= -1.5 (GENE1, GENE2)

Filter for both up- and down-regulated genes
both_filtered <- .applyDirectionFilter(signature, "any", thresholds)
Returns genes with |logFC| >= 1.5 (GENE1, GENE2, GENE8, GENE9, GENE10)

End(Not run)

.applySimilarityCutoff
Apply similarity cutoff filter to concordants data

Description

This internal function filters concordants data based on absolute similarity values meeting or ex-
ceeding the specified cutoff threshold.

.applyTargetRenaming 7

Usage

.applySimilarityCutoff(concordants, cutoff)

Arguments
concordants A dataframe containing concordants data.
cutoff Numeric similarity cutoff value.

Details

This function:

1. Filters based on absolute similarity values
2. Retains both positive and negative similarities above threshold

3. Removes entries below the cutoff threshold

Value

A filtered dataframe containing only entries meeting the similarity cutoff.

Examples

Not run:

testData <- data.frame(similarity = c(0.5, -0.8, 0.2, -0.1))
filtered <- .applySimilarityCutoff(testData, 0.3)

Returns entries with |similarity| >= 0.3

End(Not run)

.applyTargetRenaming Apply target column renaming to consensus results

Description

This internal function applies the standard target column renaming to produce the final consensus
concordants output format.

Usage

.applyTargetRenaming(concordants)

Arguments

concordants A dataframe containing selected consensus results.

8 .calculateAbsoluteThresholds

Details

This function:

1. Applies targetRename function to standardize column names
2. Converts internal column names to user-facing consensus format

3. Handles different library types appropriately

Value

A dataframe with renamed columns following consensus output standards.

Examples

Not run:
testData <- data.frame(
signatureid = "SIG1",
compound = "A",
cellline = "A375",
similarity = 0.8
)
renamed <- .applyTargetRenaming(testData)

End(Not run)

.calculateAbsoluteThresholds
Calculate thresholds using absolute threshold values

Description

This internal function coordinates the calculation of filtering thresholds when absolute threshold
values are provided. It dispatches to the appropriate calculation function based on the number of
threshold values provided.

Usage

.calculateAbsoluteThresholds(threshold)

Arguments

threshold A numeric value or vector specifying the absolute threshold(s).
Can be:

- A single value: Dispatched to [.calculateSingleThreshold()]
- A vector of two values: Dispatched to [.calculateDoubleThreshold()]

.calculateDoubleThreshold 9

Details
This function serves as a dispatcher that:
* Checks the length of the threshold parameter

* Calls the appropriate threshold calculation function

* Throws an error if an invalid number of thresholds is provided

The function ensures that only single values or pairs of values are accepted, maintaining the integrity
of the filtering logic.

Value

A named list with two elements:

* downThreshold: The threshold for down-regulated genes
* upThreshold: The threshold for up-regulated genes

Examples

Not run:

Single threshold - creates symmetric thresholds
thresholds <- .calculateAbsoluteThresholds(1.0)

Returns: list(downThreshold = -1.0, upThreshold = 1.0)

Double threshold - uses provided values
thresholds <- .calculateAbsoluteThresholds(c(-1.5, 2.9))
Returns: list(downThreshold = -1.5, upThreshold = 2.0)

Invalid - too many values (will throw error)
thresholds <- .calculateAbsoluteThresholds(c(1.0, 2.0, 3.0))

End(Not run)

.calculateDoubleThreshold
Calculate thresholds from two threshold values

Description

This internal function handles asymmetric filtering thresholds when two threshold values are pro-
vided. The first value is used as the down-regulated threshold and the second value is used as the
up-regulated threshold.

Usage

.calculateDoubleThreshold(threshold)

10 .calculateProportional Threshold

Arguments
threshold A numeric vector of length 2 containing the threshold values. The first element
is the down-regulated threshold (typically negative), and the second element is
the up-regulated threshold (typically positive).
Details

This function enables asymmetric filtering where different absolute thresholds can be applied to
up-regulated and down-regulated genes. This is useful when you want to apply stricter criteria to
one direction of regulation than the other.

Value

A named list with two elements:

* downThreshold: The down-regulated threshold (threshold[11])
* upThreshold: The up-regulated threshold (threshold[2])

Examples

Not run:

Create asymmetric thresholds

thresholds <- .calculateDoubleThreshold(c(-2.0, 1.5))

Returns: list(downThreshold = -2.0, upThreshold = 1.5)

Stricter threshold for down-regulation
thresholds <- .calculateDoubleThreshold(c(-1.0, 0.5))
Returns: list(downThreshold = -1.0, upThreshold = 0.5)

Equal but explicit thresholds
thresholds <- .calculateDoubleThreshold(c(-1.5, 1.5))
Returns: list(downThreshold = -1.5, upThreshold = 1.5)

End(Not run)

.calculateProportionalThreshold
Calculate thresholds using proportional values

Description

This internal function calculates filtering thresholds based on quantiles of the log fold-change dis-
tribution in the signature data. This enables proportion-based filtering that adapts to the data distri-
bution.

Usage

.calculateProportionalThreshold(signature, prop)

.calculateProportional Threshold 11

Arguments
signature A data.frame-like object containing the signature data. Must have a column
named "Value_LogDiffExp" containing log fold-change values.
prop A numeric value between 0 and 1 specifying the proportion of genes to select
from each tail of the distribution.
Details

This function calculates thresholds using the quantile function:

* downThreshold: The prop quantile of the expression values

* upThreshold: The 1-prop quantile of the expression values
For example, with prop =0.1:

e downThreshold: 10th percentile (bottom 10% of values)
e upThreshold: 90th percentile (top 10% of values)

This approach is particularly useful when you want to select a fixed proportion of the most differ-
entially expressed genes regardless of their absolute expression values.

Value

A named list with two elements: *downThreshold: The quantile threshold for down-regulated
genes (quantile at prop) *upThreshold: The quantile threshold for up-regulated genes (quantile at
1-prop)

Examples

Not run:
Create sample signature data
signature <- data.frame(
Value_LogDiffExp = c(-3, -2, -1, @0, 1, 2, 3, 4, 5, 6)
)

Calculate thresholds for top/bottom 20%
thresholds <- .calculateProportionalThreshold(signature, 0.2)
Returns thresholds based on 20th and 80th percentiles

Calculate thresholds for top/bottom 10%
thresholds <- .calculateProportionalThreshold(signature, 0.1)
Returns thresholds based on 10th and 90th percentiles

Calculate thresholds for top/bottom 5% (most extreme)
thresholds <- .calculateProportionalThreshold(signature, 0.05)
Returns thresholds based on 5th and 95th percentiles

End(Not run)

12 .calculateSingle Threshold

.calculateSingleThreshold
Calculate thresholds from single threshold value

Description

This internal function creates symmetric filtering thresholds from a single threshold value. The
input value is used as the positive threshold, and its negative is used as the negative threshold.

Usage

.calculateSingleThreshold(threshold)

Arguments

threshold A single positive numeric value representing the absolute threshold for filtering.

Details

This function is used when a single threshold value is provided to filterSignature. It creates
symmetric thresholds where genes with log fold-change values greater than or equal to the posi-
tive threshold (up-regulated) or less than or equal to the negative threshold (down-regulated) are
retained.

Value

A named list with two elements:

* downThreshold: The negative threshold (-threshold)
* upThreshold: The positive threshold (threshold)

Examples

Not run:

Create symmetric thresholds from threshold = 1.5
thresholds <- .calculateSingleThreshold(1.5)

Returns: list(downThreshold = -1.5, upThreshold = 1.5)

Create symmetric thresholds from threshold = 0.8
thresholds <- .calculateSingleThreshold(@.8)
Returns: list(downThreshold = -0.8, upThreshold = 0.8)

End(Not run)

.cleanupGetConcordants 13

.cleanupGetConcordants
Clean up temporary signature file

Description
This internal function removes the temporary signature file created during the getConcordants op-
eration to prevent accumulation of temporary files.

Usage

.cleanupGetConcordants(signatureFile)

Arguments

signatureFile Character string path to the temporary signature file to be removed.

Details
The function checks if the specified file exists and removes it using unlink(). This cleanup is
performed automatically at the end of the getConcordants operation.

Value

Invisible NULL. The function is called for its side effect of removing the temporary file.

Examples

NULL

.combineConcordantsData
Combine concordants dataframes for consensus analysis

Description
This internal function combines one or more concordants dataframes into a single dataframe for
further processing.

Usage

.combineConcordantsData(dots)

Arguments

dots A list of dataframes to combine.

14 .computeConsensusFromSignature

Details
This function:
1. Combines multiple dataframes using row binding

2. Preserves all columns from input dataframes

3. Handles cases where dataframes have different column sets

Value

A combined dataframe with all input data.

Examples

Not run:

df1 <- data.frame(similarity = 0.5, compound = "A")
df2 <- data.frame(similarity = -0.3, compound = "B")
combined <- .combineConcordantsData(list(df1, df2))

End(Not run)

.computeConsensusFromSignature

Compute consensus concordant signatures from a single input signa-
ture

Description

This internal helper wraps the common paired / unpaired workflow used by investigateSignature()
and investigateTarget() for a single already prepared or retrieved signature. It applies direc-
tional filtering, queries iLINCS for concordant signatures, and collapses results via consensusConcordants().

Usage

.computeConsensusFromSignature(
signature,
outputLib,
filterThreshold = NULL,
filterProp = NULL,
similarityThreshold = 0.321,
paired = TRUE,
outputCelllLines = NULL

.computeConsensusFromSignature 15

Arguments
signature A data.frame / tibble / DataFrame produced by prepareSignature() or getSignature()
with standard signature columns.
outputLib Character. One of "OE", "KD", or "CP" indicating the iLINCS library to search
for concordant signatures.
filterThreshold
Numeric (optional). Absolute threshold(s) passed to filterSignature(). Use
either filterThreshold or filterProp.
filterProp Numeric in (0, 0.5] (optional). Proportion for quantile based filtering in filterSignature().
Ignored if filterThreshold is supplied.
similarityThreshold
Numeric in 0..1. Minimum absolute similarity retained by consensusConcordants().
paired Logical. If TRUE perform separate up / down filtering and concordance queries;
otherwise aggregate direction = "any".
outputCelllLines
Optional character vector restricting target cell lines during consensus filtering.
Passed to consensusConcordants().
Details

Error handling is delegated to component functions:

 Library validation via stopIfInvalidlLibraries()

* Signature structure via stopIfInvalidSignature() (indirectly used by getConcordants())
* Filtering parameter validation via .validateFilterSignatureInput()

» Concordance / network errors via internal iLINCS response processors.

Ifboth filterThreshold and filterProp are supplied an error is raised upstream in filterSignature().
Provide only one.

Value

A tibble of consensus concordant signatures with standardized target columns (already renamed
via internal consensus pipeline). Columns include TargetSignature, Target, TargetCelllLine,
Similarity, pValue, InputSigDirection, SignatureType, and optional time / concentration.

Examples

NULL

16 .createSignatureRequest

.createSignatureRequest
Create HTTP request for iLINCS signature retrieval

Description

This internal function constructs and configures the HTTP request object for retrieving signature
data from the iLINCS APIL

Usage

.createSignatureRequest(sigld)

Arguments

sigld A character string containing the iLINCS signature ID to retrieve.

Details

This function builds a complete HTTP request by:

1. Setting the base URL using .ilincsBaseUrl()
. Appending the API path: "ilincsR/downloadSignature"
. Adding query parameters: sigID and noOfTopGenes (set to Inf for all genes)

2
3
4. Setting the HTTP method to POST

5. Adding a user agent string using . returnUserAgent()

The request is configured but not executed - it must be performed using the request execution
function.

Value

An httr2 request object configured for the iLINCS downloadSignature endpoint.

Examples

NULL

.detectSignatureDirection 17

.detectSignatureDirection
Detect signature direction from expression values

Description

This internal function analyzes the log fold-change values in a signature to determine the overall
direction of regulation.

Usage

.detectSignatureDirection(signature)

Arguments
signature A data.frame-like object containing the signature data. Must have a column
named "Value_LogDiffExp" with log fold-change values.
Details

The function examines the "Value_LogDiffExp" column to determine direction:

o "Up": All expression values are greater than or equal to zero
* "Down": All expression values are less than or equal to zero

* "Any": Mixed positive and negative values

Note that zero values are considered "Up" direction. This direction information is used by iLINCS
for signature analysis and is included in the output results.

Value

Character string indicating signature direction: "Up", "Down", or "Any".

Examples

NULL

18 .executellincsRequest

.executellincsRequest Execute iLINCS API request with error handling

Description

This internal function safely executes an httr2 request and captures errors instead of raising them,
allowing downstream functions to handle them appropriately.

Usage

.executeIlincsRequest(request, verbose = FALSE)

Arguments

request An httr2_request object to be executed.

verbose Logical indicating whether to display request details. Default is FALSE.
Details

This function configures the request to not raise errors automatically on HTTP error status codes
(4xx, 5xx) by using httr2: :req_error(). Instead, error responses are returned as response objects
that can be processed by .processIlincsResponse() to generate appropriate error messages with
context.

The function handles:

¢ Network connection errors
e HTTP error status codes (400, 401, 403, 404, 500, etc.)
¢ Timeout errors

 Other httr2 request failures

Value

An httr2_response object, including error responses that would normally cause httr2 to raise an
error.

Examples

NULL

.executeSignatureRequest 19

.executeSignatureRequest
Execute iLINCS API request with error handling

Description

This internal function safely executes an httr2 request and captures errors instead of raising them,
allowing downstream functions to handle them appropriately.

Usage

.executeSignatureRequest(request, verbose = FALSE)

Arguments

request An httr2_request object to be executed.

verbose Logical indicating whether to display request details. Default is FALSE.
Details

This function configures the request to not raise errors automatically on HTTP error status codes
(4xx, 5xx) by using httr2: :reg_error (). Instead, error responses are returned as response objects
that can be processed by .processSignatureResponse() to generate appropriate error messages
with context.

The function handles:

¢ Network connection errors

HTTP error status codes (400, 401, 403, 404, 500, etc.)

¢ Timeout errors

Other httr2 request failures

Value

An httr2_response object, including error responses that would normally cause httr2 to raise an
error.

Examples

NULL

20 filterByCellLine

.filterByCelllLine Filter concordants data by cell line

Description

This internal function filters the concordants data to include only the specified cell lines.

Usage

.filterByCelllLine(concordants, celllLine)

Arguments

concordants A dataframe containing concordants data.

celllLine A character vector of cell lines to include, or NULL for no filtering.
Details

This function:

1. Filters data based on the cellline column
2. Returns original data if cellLine is NULL

3. Handles cases where no data matches the specified cell lines

Value

A filtered dataframe containing only the specified cell lines.

Examples

Not run:

testData <- data.frame(
similarity = c(0.5, -0.3, 0.7),
cellline = c("A375", "PC3", "MCF7")

)
filtered <- .filterByCelllLine(testData, c("A375", "PC3"))

End(Not run)

.generatellincsRequest 21

.generatellincsRequest
Create iLINCS API request

Description

This internal function constructs and executes the HTTP request to the iLINCS API for concordant
signature analysis.

Usage

.generatellincsRequest(signatureFile, ilincsLibrary)

Arguments

signatureFile Character string path to the signature file to upload.

ilincsLibrary Character string specifying the iLINCS library to search. Must be one of "OE",
IIKD”, Or IICPH.
Details

The function:
1. Maps the library name to the internal iLINCS library ID
2. Constructs a multipart POST request with the signature file
3. Includes appropriate user agent and API endpoint
4. Executes the request and returns the response

The library mapping is:

* CP (Chemical Perturbagen): LIB_5
¢ KD (Knockdown): LIB_6
* OE (Overexpression): LIB_11

Value

An httr2 response object from the iLINCS API.

Examples

NULL

22 .groupByTargetAndSelectMax

.groupByTargetAndSelectMax
Group concordants by target and select maximum similarity entries

Description

This internal function groups concordants data by target (compound or treatment) and retains only
the entries with maximum absolute similarity for each target.

Usage

.groupByTargetAndSelectMax(concordants)

Arguments

concordants A dataframe containing filtered concordants data.

Details

This function:

1. Groups by treatment or compound columns (whichever is available)
2. For each group, retains only entries with maximum absolute similarity
3. Handles ties by keeping all tied entries

4. Preserves the structure for downstream processing

Value

A dataframe with deduplicated targets, keeping maximum similarity entries.

Examples

Not run:
testData <- data.frame(
compound = c("A", "A", "B", "B"),
similarity = c(0.5, 0.8, -0.3, -0.7),
cellline = c("A375", "PC3", "A375", "PC3")
)
grouped <- .groupByTargetAndSelectMax(testData)
Returns entries with max |similarity| for each compound

End(Not run)

.lincsBaseUrl 23

.ilincsBaseUrl Parameterize the base URL for the iLINCS API

Description

Parameterize the base URL for the iLINCS API

Usage

.ilincsBaseUrl()

Value

a fixed string URL

.isValidSignatureld Check if a signature ID exists in the metadata tables

Description
This internal function validates whether a signature ID exists in any of the metadata tables (CP, KD,
or OE).

Usage
.isValidSignatureld(sigId)

Arguments

sigld A character string or vector containing the signature ID(s) to validate.

Details

This function searches all three metadata tables:

* Chemical Perturbagen (CP) metadata
¢ Knockdown (KD) metadata

* Overexpression (OE) metadata
The function checks the "SourceSignature" column in each metadata table for the provided signature
ID(s).
Value

A logical value or vector: TRUE if the signature exists, FALSE otherwise. Returns a vector of the
same length as the input when given a vector.

24 .JoadMetadata

Examples

NULL

.loadMetadata Load the correct metadata table for a given library

Description

This internal function retrieves the appropriate metadata table based on the specified iLINCS library
type.

Usage
.loadMetadata(lib)
Arguments
lib A character string specifying the library type. Must be one of "OE", "KD", or
IICPH.
Details

The function loads pre-compiled metadata tables for each library:

e "OE": Overexpression metadata (oeMetadata)
e "KD": Knockdown metadata (kdMetadata)

e "CP": Chemical Perturbagen metadata (cpMetadata)

These metadata tables are included with the package and contain information about available sig-
natures in each iLINCS library.

Value

A tibble containing the metadata for the specified library. The structure varies by library type but
typically includes columns for signature identifiers, treatments, cell lines, and other metadata.

Examples

NULL

.mapToL 1000WithoutPvalues 25

.mapToL1000WithoutPvalues
Map filtered data to L1000 format without p-values

Description
This internal function maps the filtered expression data to the standardized L1000 signature format,
without p-value information.

Usage

.mapToL1000WithoutPvalues(filteredData, geneColumn, logfcColumn)

Arguments

filteredData A dataframe containing filtered differential expression data.

geneColumn Character string specifying the column name containing gene symbols.
logfcColumn Character string specifying the column name containing log fold-change values.
Value

A tibble with standardized L1000 signature format without p-values.

.mapToL1000WithPvalues
Map filtered data to L1000 format with p-values

Description
This internal function maps the filtered differential expression data to the standardized L1000 sig-
nature format, including p-value information.

Usage

.mapToL1000WithPvalues(filteredData, geneColumn, logfcColumn, pvalColumn)

Arguments

filteredData A dataframe containing filtered differential expression data.

geneColumn Character string specifying the column name containing gene symbols.
logfcColumn Character string specifying the column name containing log fold-change values.
pvalColumn Character string specifying the column name containing p-values.

Value

A tibble with standardized L1000 signature format including p-values.

26 .processConsensusPipeline

.prepareSignatureFile Prepare signature file for iLINCS upload

Description
This internal function creates a temporary file containing the signature data formatted for upload to
the iLINCS API.

Usage

.prepareSignatureFile(signature)

Arguments

signature A data.frame-like object containing the signature data.

Details
The function creates a temporary file with a ".xIs" extension and writes the signature data as a
tab-separated file. The file is automatically cleaned up by the system when the R session ends.
Value

Character string path to the temporary signature file.

Examples

NULL

.processConsensusPipeline
Process concordants data through the complete consensus pipeline

Description
This internal function orchestrates the complete processing pipeline for consensus concordants anal-
ysis.

Usage

.processConsensusPipeline(concordants, cutoff, celllLine)

Arguments
concordants A combined dataframe containing all concordants data.
cutoff Numeric similarity cutoff value.

celllLine Character vector of cell lines to include, or NULL.

.processllincsResponse 27

Details

This function coordinates the following processing steps:

. Cell line filtering (if specified)
. Similarity cutoff application
. Target grouping and maximum similarity selection

. Column selection and ordering

wnm A W N =

. Target column renaming

Value

A processed dataframe with consensus concordants results.

Examples

Not run:

testData <- data.frame(
similarity = c(0.5, -0.8, 0.2),
compound = c("A", "B", "C"),
cellline = c("A375", "PC3", "A375")

)

processed <- .processConsensusPipeline(testData, 0.3, "A375")

End(Not run)

.processIlincsResponse
Process iLINCS API response into concordant signatures

Description

This internal function dispatches to appropriate handlers based on the response status and content
from the iLINCS APIL.

Usage

.processIlincsResponse(response, sigDirection, ilincsLibrary)

Arguments
response An httr2 response object from the iLINCS API.
sigDirection Character string indicating the signature direction ("Up", "Down", or "Any").

ilincsLibrary Character string specifying the iLINCS library used ("CP", "KD", or "OE").

28 .processllincsResponseEmpty

Details
The function dispatches to specialized handlers:

1. .processIlincsResponseError for HTTP error responses
2. .processIlincsResponseEmpty for empty concordance tables

3. .processIlincsResponseSuccess for successful responses with data
The resulting tibble always contains these columns in order:

e signatureid: Unique signature identifier

* treatment: Drug/treatment name (compound renamed for CP library)
* concentration: Drug concentration (NA for KD/OE libraries)

e time: Treatment duration

e cellline: Cell line used

e similarity: Similarity score (rounded to 8 decimal places)

* pValue: Statistical significance (rounded to 20 decimal places)

e sig_direction: Signature direction ("Up", "Down", or "Any")

e sig_type: Library type description

Value

A tibble containing concordant signature data with standardized column names and rounded nu-
merical values.

.processIlincsResponseEmpty
Handle empty concordance table responses

Description
This internal function creates an empty tibble with the correct structure when the iLINCS API
returns no concordant signatures.

Usage

.processIlincsResponseEmpty(sigDirection, ilincsLibrary)

Arguments

sigDirection Character string indicating the signature direction.

ilincsLibrary Character string specifying the iLINCS library used.

Value

A tibble with zero rows and the correct column structure.

.processllincsResponseError 29

.processIlincsResponseError
Handle iLINCS API response errors

Description
This internal function processes error responses from the iLINCS API and generates appropriate
erTor messages.

Usage

.processIlincsResponseError(response)

Arguments

response An httr2 response object from the iLINCS APIL.

Value

This function always stops execution with an error message.

.processIlincsResponseSuccess
Handle successful concordance table responses

Description
This internal function processes successful responses from the iLINCS API and formats the con-
cordant signature data with standardized columns.

Usage

.processIlincsResponseSuccess(concordanceTables, sigDirection, ilincsLibrary)

Arguments

concordanceTables
List containing concordance table data from API response.

sigDirection Character string indicating the signature direction.

ilincsLibrary Character string specifying the iLINCS library used.

Value

A tibble containing processed concordant signature data.

30 .processSignatureResponse

.processSignatureResponse

Process iLINCS API response for signature retrieval

Description

This internal function dispatches to appropriate handlers based on the response status from the
iLINCS API.

Usage

.processSignatureResponse(response)

Arguments

response An httr2 response object from the iLINCS APIL.

Details

The function dispatches to specialized handlers:

1. .processSignatureResponseError () for HTTP error responses

2. .processSuccessfulResponse() for successful responses with data

The resulting tibble contains these columns:

* signaturelD: The signature identifier
* ID_geneid: Character gene identifiers

* Name_GeneSymbol: Gene symbols

Value_LogDiffExp: Log fold-change values (rounded to 12 decimal places)

Significance_pvalue: P-values (rounded to 12 decimal places)

Value

A tibble containing signature data with standardized columns.

.processSignatureResponseError 31

.processSignatureResponseError
Handle API error responses for signature retrieval

Description

This internal function processes error responses from the iLINCS API and generates appropriate
error messages for signature retrieval failures.

Usage

.processSignatureResponseError(response)

Arguments

response An httr2 response object from the iLINCS APIL.

Value

This function always stops execution with an error message.

.processSuccessfulResponse
Process successful API response into signature data frame

Description

This internal function processes a successful HTTP response from the iLINCS API and converts it
into a standardized signature data frame.

Usage

.processSuccessfulResponse(response)

Arguments

response An httr2 response object from a successful iLINCS API call.

32 .processToL 1000Signature

Details

This function:

1. Extracts JSON data from the response body

. Maps the "signature" elements from the response

. Flattens the nested structure into a data frame

. Removes the "PROBE" column (not needed for analysis)
. Converts gene IDs to character format

. Rounds numeric values to 12 decimal places for consistency

~N N L BN

. Adds signature metadata including L1000 status

The rounding ensures consistent precision across different platforms and prevents floating-point
precision issues in downstream analyses.

Value

A tibble containing the signature data with standardized columns: * signatureID: The signature
identifier * ID_geneid: Character gene identifiers * Name_GeneSymbol: Gene symbols * Value_LogDiffExp:
Log fold-change values (rounded to 12 decimal places) * Significance_pvalue: P-values (rounded

to 12 decimal places)

Examples

NULL

.processTolL1000Signature
Process differential expression data into L1000 signature format

Description

This internal function orchestrates the conversion of filtered differential expression data into the
standardized L1000 signature format.

Usage

.processToL1000Signature(
filteredData,
geneColumn,
logfcColumn,
pvalColumn = NA

.returnLibrary 33

Arguments

filteredData A dataframe containing filtered differential expression data.

geneColumn Character string specifying the column name containing gene symbols.

logfcColumn Character string specifying the column name containing log fold-change values.

pvalColumn Character string specifying the column name containing p-values, or NA.
Details

This function dispatches to appropriate mapping functions based on whether p-value information is
available:

1. .mapToL1000WithPvalues when p-value column is specified

2. .mapToL1000WithoutPvalues when p-value column is NA

Value

A tibble with the standardized L.1000 signature format.

.returnLibrary Return the internal iLINCS Library ID for a given library

Description

This internal function maps user-friendly library names to the internal library identifiers used by the
iLINCS API.

Usage
.returnLibrary(lib)
Arguments
lib A character string specifying the library name. Must be one of "OE", "KD", or
IICPH.
Details

The mapping between user library names and iLINCS internal IDs is:

e "OE" (Overexpression) -> "LIB_11"
 "KD" (Knockdown) -> "LIB_6"
e "CP" (Chemical Perturbagen) -> "LIB_5"

The function validates the input library name before mapping and will stop execution if an invalid
library is provided.

34 .returnResults

Value

A character string containing the corresponding iLINCS library ID.

See Also
[stopIfinvalidLibraries()] for library validation details

Examples

NULL

.returnResults Return results in appropriate format based on input type

Description

This internal function formats the output results to match the input signature type, ensuring consis-
tent data type handling.

Usage

.returnResults(result, inputClass)

Arguments
result A tibble containing the processed results from iLINCS API.
inputClass A character vector containing the class of the original input signature (from
.validateGetConcordantsInput).
Details

This function ensures that the output format matches the input format for consistency. If the original
signature was provided as an S4Vectors::DataFrame, the results are converted back to DataFrame.
Otherwise, results are returned as a tibble.

Value

The results in the appropriate format: * S4Vectors::DataFrame if input was a DataFrame * tibble
otherwise (for data.frame, tibble inputs)

Examples

NULL

.returnUserAgent 35

.returnUserAgent Return a string suitable as a User-Agent for the iLINCS API

Description

This internal function constructs a standardized User-Agent string for HTTP requests to the iL.-
INCS AP], including package name, version, and repository URL for identification and debugging
purposes.

Usage

.returnUserAgent ()

Details

The User-Agent string follows the format: "drugfindR/<current version>; https://github.com/CogDisResLab/drug:

This helps iLINCS administrators identify requests from this package and assists with debugging if
issues arise. The version is automatically retrieved from the package metadata.

Value

A character string formatted as a User-Agent header value.

Examples

NULL

.selectAndOrderResults
Select and order consensus results columns

Description
This internal function selects the relevant columns for consensus results and orders them appropri-
ately for output.

Usage

.selectAndOrderResults(concordants)

Arguments

concordants A dataframe containing processed concordants data.

36 .stopIfContainsMissing Values

Details
This function:

1. Selects standard consensus output columns
2. Orders results by descending absolute similarity
3. Handles both CP/KD libraries (with concentration) and OE libraries (without)

Value

A dataframe with selected and ordered columns for consensus output.

Examples

Not run:

testData <- data.frame(
signatureid = "SIG1",
compound = "A",
cellline = "A375",
similarity = 0.8,
sig_direction = "Up”,
pValue = 0.01

)
selected <- .selectAndOrderResults(testData)

End(Not run)

.stopIfContainsMissingValues
Validate signature for missing values

Description
This internal function checks if the signature data frame contains any missing (NA) values, which
are not allowed in iLINCS signature data.

Usage

.stopIfContainsMissingValues(signature)

Arguments

signature A data.frame-like object containing signature data.

Details

The function scans the entire signature data frame for missing values. iLINCS requires complete
data for all signature analysis, so any NA values will cause the function to stop with an informative
error message indicating which columns contain missing values.

.stoplfInvalidColNames 37

Value

Invisible NULL. The function throws an error if validation fails.

Examples

NULL

.stopIfInvalidColNames
Validate signature column names

Description

This internal function checks if the signature data frame has the expected column names in the
correct order for iLINCS compatibility.

Usage

.stopIfInvalidColNames(signature)

Arguments

signature A data.frame-like object containing signature data.

Details

The function validates that the signature has exactly the following columns in the specified order:

. signaturelD: Signature identifier

. ID_geneid: Gene ID

1

2

3. Name_GeneSymbol: Gene symbol

4. Value_LogDiffExp: Log fold-change expression value
5

. Significance_pvalue: Statistical significance p-value

Value

Invisible NULL. The function throws an error if validation fails.

Examples

NULL

38 .validateConsensusConcordantsInput

.validateConsensusConcordantsInput
Validate consensusConcordants input parameters

Description
This internal function validates all input parameters for the consensusConcordants function to en-
sure they meet the required constraints.

Usage

.validateConsensusConcordantsInput(dots, paired, cutoff, celllLine)

Arguments
dots A list of dataframes passed via ... parameter.
paired Logical indicating whether paired analysis is requested.
cutoff Numeric similarity cutoff value.
celllLine Character vector of cell lines, or NULL.
Details

This function performs the following validations:

1. Ensures paired analysis has exactly two dataframes
2. Ensures unpaired analysis has exactly one dataframe
3. Validates cutoff is numeric and within reasonable range

4. Validates cellLine parameter format

Value

Invisible NULL. The function throws an error if validation fails.

Examples

Not run:

Valid calls (no errors)

testData <- data.frame(similarity = c(0.5, -0.3), compound = c("A", "B"))
.validateConsensusConcordantsInput(list(testData), FALSE, ©.3, NULL)
.validateConsensusConcordantsInput(list(testData, testData), TRUE, 0.3, "A375")

Invalid calls (will throw errors)
.validateConsensusConcordantsInput(list(), FALSE, @.3, NULL) # No data
.validateConsensusConcordantsInput(list(testData), TRUE, 0.3, NULL) # Paired needs 2 dataframes

End(Not run)

.validateFilterSignaturelnput 39

.validateFilterSignaturelnput
Validate filterSignature input parameters

Description

This internal function validates all input parameters for the filterSignature function to ensure they
meet the required constraints and are mutually compatible.

Usage

.validateFilterSignaturelnput(signature, direction, threshold, prop)

Arguments
signature A data.frame-like object (data.frame, tibble, or DataFrame) containing the L1000
signature data.
direction Character string specifying the filtering direction. Must be one of "up", "down",
or "any".
threshold Numeric value or vector specifying absolute threshold(s). Can be NULL, a sin-
gle value, or a vector of two values. Cannot be specified together with prop.
prop Numeric value specifying the proportion for quantile-based filtering. Must be
between 0 and 1. Cannot be specified together with threshold.
Details

This function performs the following validations in order:

Ensures signature is a data.frame-like object

. Validates direction is one of the allowed values

. Verifies that only one of threshold or prop is specified

. For threshold: checks length (1-2 values) and order (lower, higher)

S R S

. For prop: checks it’s a single value between 0 and 1

Value

Invisible NULL. The function throws an error if validation fails.

Examples

Not run:

Valid calls (no errors)

sig <- data.frame(Value_LogDiffExp = c(-2, -1, 0, 1, 2))
.validateFilterSignaturelnput(sig, "any"”, 1.0, NULL)
.validateFilterSignaturelnput(sig, "up”, NULL, 0.1)
.validateFilterSignaturelnput(sig, "down", c(-1.5, 1.0), NULL)

40 .validateGetConcordantsInput

Invalid calls (will throw errors)

.validateFilterSignaturelnput(sig, "invalid”, 1.0, NULL) # Invalid direction
.validateFilterSignaturelnput(sig, "any", 1.0, 0.1) # Both threshold and prop
.validateFilterSignatureInput(sig, "any", NULL, NULL) # Neither threshold nor prop
.validateFilterSignaturelnput(sig, "any”, c(1, 2, 3), NULL) # Too many thresholds
.validateFilterSignaturelnput(sig, "any", c(2, 1), NULL) # Wrong threshold order
.validateFilterSignatureInput(sig, "any", NULL, 1.5) # Proportion > 1
.validateFilterSignaturelnput(sig, "any"”, NULL, -@.1) # Proportion < @

End(Not run)

.validateGetConcordantsInput
Validate getConcordants input parameters

Description

This internal function validates the input parameters for the getConcordants function to ensure they
meet the required constraints.

Usage

.validateGetConcordantsInput(signature, ilincsLibrary)

Arguments

signature A data.frame-like object containing the signature data. Must have the required
iLINCS signature structure with columns: signaturelD, ID_geneid, Name_GeneSymbol,
Value_LogDiffExp, Significance_pvalue.

ilincsLibrary Character string specifying the iLINCS library to search. Must be one of "OE",
VIKDH’ Or HCPII'
Details
This function performs comprehensive validation:

1. Ensures signature is a data.frame-like object (data.frame, tibble, or S4Vectors::DataFrame)
2. Validates complete signature structure via stopIfInvalidSignature()
3. Validates ilincsLibrary is one of the supported libraries

The signature must conform to the iLINCS expected structure. Use prepareSignature() to ensure

proper formatting.

Value

A character vector containing the class of the input signature. This is used internally to determine
the return type format.

.validateGetSignaturelnput 41

See Also

[stopIfinvalidSignature() 1 for signature structure validation, [prepareSignature()]
for signature preparation

Examples

NULL

.validateGetSignaturelnput
Validate getSignature input parameters

Description
This internal function validates all input parameters for the getSignature function to ensure they
meet the required constraints.

Usage

.validateGetSignatureInput(sigId)

Arguments

sigld A character string containing the iLINCS signature ID to retrieve.

Details

This function performs the following validations:

* Ensures sigId is a character vector of length 1
* Ensures sigId is not empty or whitespace-only

* Validates that the signature exists in the metadata tables

Value

Invisible NULL. The function throws an error if validation fails.

Examples

NULL

42 .validatePrepareSignaturelnput

.validateLibrary Check if a single library is valid

Description

This internal function validates whether a single library name is one of the supported iLINCS library
types.

Usage

.validatelLibrary(lib)
Arguments

lib A character string containing a single library name to validate.
Details

Valid library names are:

e "CP": Chemical Perturbagen library
* "KD": Knockdown library

* "OE": Overexpression library

Value

A logical value: TRUE if the library is valid, FALSE otherwise.

Examples

NULL

.validatePrepareSignaturelnput
Validate prepareSignature input parameters

Description
This internal function validates all input parameters for the prepareSignature function to ensure they
meet the required constraints.

Usage

.validatePrepareSignaturelnput(dge, geneColumn, logfcColumn, pvalColumn)

consensusConcordants 43

Arguments
dge A dataframe-like object containing differential gene expression data.
geneColumn Character string specifying the column name containing gene symbols.
logfcColumn Character string specifying the column name containing log fold-change values.
pvalColumn Character string specifying the column name containing p-values, or NA.
Details

This function performs the following validations:

1. Ensures all column names are character strings
2. Validates that specified columns exist in the input dataframe

3. Checks that the dataframe is not empty

Value

Invisible NULL. The function throws an error if validation fails.

Examples

NULL

consensusConcordants Generate a Consensus list of Targets [Stable]

Description

This function takes a list of (optionally split) concordance dataframes and returns a ranked list of
gene or drug targets that have been chose for their maximal similarity to the signature

Usage
consensusConcordants(..., paired = FALSE, cutoff = 0.321, cellLine = NULL)
Arguments
One or Two (see paired) Data Frames with the concordants
paired Logical indicating whether you split the dataframes by up and down regulated
in prior analysis
cutoff A similarity cutoff value. Defaults to 0.321
celllLine A character vector of Cell Lines you are interested in.
Value

A tibble with the filtered and deduplicated results

44 consensusConcordants

Examples

Create mock concordants data for demonstration
mockConcordants <- data.frame(
signatureid = paste@("SIG", 1:10),
treatment = c(
"TP53", "TP53", "MYC", "MYC", "EGFR",
"EGFR", "KRAS", "BRCA1", "BRCA1", "PIK3CA"
),
cellline = ¢(
"A375", "PC3", "A375", "MCF7", "A375",
"PC3", "A375", "A375", "MCF7", "A375"
),
time = rep("24H", 10),
concentration = rep(NA, 10),
sig_direction = rep(”"DOWN", 10),
sig_type = rep("single”, 10),
similarity = c(
0.85, 0.72, -0.68, -0.45, 0.55,
0.38, 0.42, 0.51, 0.33, 0.29
),
pValue = rep(0.001, 10)
)

Example 1: Basic consensus with default cutoff
consensus <- consensusConcordants(mockConcordants)
nrow(consensus) # Targets with |similarity| >= 0.321

Example 2: Consensus with higher cutoff
consensus_strict <- consensusConcordants(mockConcordants, cutoff = 0.5)
nrow(consensus_strict) # Fewer targets with higher threshold

Example 3: Filter by cell line
consensus_A375 <- consensusConcordants(mockConcordants, cellLine = "A375")
unique(consensus_A375$CelllLine) # Only A375

Network-dependent examples using real iLINCS data
Get the L1000 signature for LINCSKD_28
kdSignature <- getSignature(”LINCSKD_28")

Get concordant gene knockdown signatures
concordantSignatures <- getConcordants(kdSignature, ilincsLibrary = "KD")

Get the consensus list with different parameters
consensus <- consensusConcordants(concordantSignatures, cutoff = 0.5)

Paired analysis example

filteredUp <- filterSignature(kdSignature, direction = "up"”, threshold = 0.5)
filteredDown <- filterSignature(kdSignature, direction = "down", threshold = -0.5)
concordants_up <- getConcordants(filteredUp, ilincsLibrary = "KD")
concordants_down <- getConcordants(filteredDown, ilincsLibrary = "KD")

consensus <- consensusConcordants(concordants_up, concordants_down, paired = TRUE)

filterSignature 45

filterSignature Filter the L1000 Signature [Stable]

Description

This function filters the L1000 signature to a given threshold, identifying up-regulated, down-
regulated, or both up- and down-regulated genes. The function supports both absolute threshold
filtering and proportional filtering based on quantiles of the expression data.

Usage

filterSignature(signature, direction = "any"”, threshold = NULL, prop = NULL)

Arguments

signature A data.frame, tibble, or DataFrame containing the L1000 signature. Must con-
tain a column named "Value_LogDiffExp" with log fold-change values.

direction Character string specifying the direction to filter. Must be one of "up" (up-
regulated genes only), "down" (down-regulated genes only), or "any" (both up-
and down-regulated genes). Defaults to "any".

threshold Numeric value or vector specifying the log fold-change threshold(s). Can be: *
A single positive value: Creates symmetric thresholds (£threshold) * A vec-
tor of two values: First value is the down-regulated threshold, second value
is the up-regulated threshold Cannot be specified together with prop. One of
threshold or prop must be provided.

prop Numeric value between 0 and 1 specifying the proportion of genes to select from
the top and bottom of the expression distribution. For example, prop = 0.1
selects the top 10% most up-regulated and bottom 10% most down-regulated
genes. Cannot be specified together with threshold.

Details

The filtering process follows these steps:

1. Input validation: Checks data frame structure and parameter consistency

2. Threshold calculation: Computes filtering thresholds based on either absolute values (threshold)
or quantiles (prop)

3. Direction-based filtering: Applies the computed thresholds according to the specified direction
When using threshold:

* Single value: Genes with llogFCl >= threshold are retained
* Two values: Genes with logFC <= threshold[1] OR logFC >= threshold[2]

46 filterSignature

When using prop:

* Thresholds are calculated as quantiles of the expression distribution
* Down threshold = quantile(logFC, prop)
* Up threshold = quantile(logFC, 1 - prop)

Value

A tibble containing the filtered L1000 signature with the same structure as the input but containing
only genes that meet the filtering criteria.

See Also

\link{getSignature} for retrieving L1000 signatures from iLINCS, \1link{prepareSignature}
for preparing custom signatures, \1ink{getConcordants} for finding concordant signatures

Examples

Create a mock signature for demonstration
mockSignature <- data.frame(
signatureID = rep(”"MOCK@Q1", 20),
Name_GeneSymbol = paste@("GENE", 1:20),
ID_geneid = 1:20,

Value_LogDiffExp = c(
-3.5, -2.8, -2.1, -1.5, -1.2, -0.8, -0.5, -0.3,
-0.1, 0.1, 0.3, 0.6, 0.9, 1.2, 1.6, 2.0, 2.4, 2.9, 3.3, 3.8

)

Example 1: Filter by symmetric absolute threshold

Keeps genes with |logFC| >= 1.5

filteredSymmetric <- filterSignature(mockSignature, threshold = 1.5)
nrow(filteredSymmetric) # Should return 8 genes

Example 2: Filter by asymmetric absolute thresholds

Keeps genes with logFC <= -2.0 OR logFC >= 2.5

filteredAsymmetric <- filterSignature(mockSignature, threshold = c(-2.0, 2.5))
nrow(filteredAsymmetric) # Should return 5 genes

Example 3: Filter by proportion (top and bottom 20%)
filteredProportion <- filterSignature(mockSignature, prop = 0.2)
nrow(filteredProportion) # Should return 8 genes (4 up + 4 down)

Example 4: Filter only up-regulated genes by threshold
upRegulated <- filterSignature(mockSignature, direction = "up”, threshold = 1.0)
all(upRegulated$Value_LogDiffExp >= 1.0) # Should be TRUE

Example 5: Filter only down-regulated genes by threshold
downRegulated <- filterSignature(mockSignature, direction = "down"”, threshold = 1.0)

all(downRegulated$Value_LogDiffExp <= -1.0) # Should be TRUE

Network-dependent examples using real iLINCS data

getConcordants 47

Get the L1000 signature for LINCSKD_28
kdSignature <- getSignature("LINCSKD_28")

Filter for top 5% most extreme genes
topExtreme <- filterSignature(kdSignature, prop = 0.05)

Get top 20% most up-regulated genes
topUpregulated <- filterSignature(kdSignature, direction = "up”, prop = 0.2)

getConcordants Get concordant signatures from iLINCS database [Stable]

Description

This function queries the iLINCS (Integrative Library of Integrated Network-based Cellular Signa-
tures) database to find signatures that are concordant (similar) to a given input signature.

Usage
getConcordants(signature, ilincsLibrary = "CP")
Arguments
signature A data.frame, tibble, or S4Vectors::DataFrame containing the signature data.

Must conform to iLINCS signature structure with columns: * signaturelID:
Signature identifier * ID_geneid: Gene IDs * Name_GeneSymbol: Gene sym-
bols * Value_LogDiffExp: Log fold-change values * Significance_pvalue:
Statistical significance p-values

Use prepareSignature() to ensure proper formatting.

ilincsLibrary Character string specifying the iLINCS library to search. Must be one of: *
"CP": Chemical Perturbagen library (default) * "KD": Knockdown library *
"OE": Overexpression library

Details
The function performs the following steps:

. Validates input parameters

. Creates a temporary file with signature data

. Detects signature direction from expression values
Sends a multipart POST request to the iLINCS API
Processes the JSON response into a standardized tibble

N

6. Cleans up temporary files
The signature direction is determined as follows:

* "Up": All expression values are greater than or equal to zero
* "Down": All expression values are less than or equal to zero

* "Any": Mixed positive and negative values

48

getConcordants

Value

A data structure containing concordant signatures. The return type matches the input signature type:
* tibble for data.frame or tibble inputs * S4Vectors::DataFrame for DataFrame inputs

Contains the following columns: * signatureid: Unique signature identifier * compound or treatment:
Drug/treatment name * concentration: Drug concentration (CP library only) * time: Treatment
duration * cellline: Cell line used * similarity: Similarity score (rounded to 8 decimal places)

* pValue: Statistical significance (rounded to 20 decimal places) * sig_direction: Signature
direction ("Up", "Down", or "Any")

API Details

This function interfaces with the iLINCS web service API. The signature is uploaded as a tab-
separated file and analyzed against the specified library. Results are returned as JSON and parsed
into a tibble.

Error Handling

The function will stop execution with informative error messages for:

* Invalid signature data types (must be data.frame, tibble, or DataFrame)

* Invalid signature structure (missing required columns, wrong order, etc.)
* Missing values in signature data

* Unsupported iLINCS library names

* HTTP errors from the iLINCS API

* Invalid or empty API responses

References

iLINCS Portal: http://www.ilincs.org/

Pilarczyk et al. (2020). Connecting omics signatures and revealing biological mechanisms with
iLINCS. Nature Communications, 11(1), 4058.

See Also

[prepareSignature() 1] for signature preparation, [filterSignature() 1 for signature fil-
tering, [investigateSignature() 1] for signature investigation

Examples

Input validation examples (no API calls)
These demonstrate proper signature structure
mockSig <- data.frame(
signatureID = rep("TEST", 3),
ID_geneid = c("123", "456", "789"),
Name_GeneSymbol = c("TP53", "MYC", "EGFR"),
Value_LogDiffExp = c(1.5, -2.0, 0.8)

http://www.ilincs.org/

getSignature 49

Validate library parameter (should produce error)
tryCatch(
getConcordants(mockSig, ilincsLibrary = "INVALID"),
error = function(e) message("Expected error: invalid library")

)

This example requires network access to the iLINCS API

Load example differential expression data

dge_file <- system.file("extdata”, "dCovid_diffexp.tsv”,
package = "drugfindR"

)

dge_data <- read.delim(dge_file)

Prepare signature to ensure proper structure
signature <- prepareSignature(

dge_datal[1:50, 1],

geneColumn = "hgnc_symbol”,

logfcColumn = "logFC",

pvalColumn = "PValue”

)

Find concordant chemical perturbagens
cpConcordants <- getConcordants(signature, ilincsLibrary
head(cpConcordants)

"CP™)

Find concordant knockdown signatures
kdConcordants <- getConcordants(signature, ilincsLibrary = "KD")
head(kdConcordants)

Find concordant overexpression signatures
oeConcordants <- getConcordants(signature, ilincsLibrary = "OE")
head(oeConcordants)

Works with different data frame types
signatureDf <- as.data.frame(signature)
cpConcordantsDf <- getConcordants(signatureDf, "CP")

Works with S4Vectors::DataFrame

signatureDataFrame <- S4Vectors::DataFrame(signature)
cpConcordantsDataFrame <- getConcordants(signatureDataFrame, "CP")
Returns S4Vectors::DataFrame to match input type

getSignature Get the L1000 Signature from iLINCS [Stable]

Description

This function acts as the entrypoint to the iLINCS database. This takes in an ID and returns the
signature after making a call to the iLINCS database. The function automatically detects whether

50 investigateSignature

the signature is an L1000 signature based on the signature ID and metadata tables, and retrieves all
available genes for comprehensive signature analysis.

Usage

getSignature(sigld)
Arguments

sigld character. The ilincs signature_id
Value

a tibble with the signature data containing the following columns: * signatureID: The signature
identifier * ID_geneid: Gene IDs (Entrez) * Name_GeneSymbol: Gene symbols * Value_LogDiffExp:
Log fold-change values * Significance_pvalue: Statistical significance p-values

Examples

Input validation example (no API call)
Demonstrates proper signature ID format validation
tryCatch(
getSignature(""), # Empty string should error
error = function(e) message("Expected error: empty signature ID")

nn

These examples require network access to the iLINCS API

Get the L1000 signature for LINCSKD_28
kdSignature <- getSignature("LINCSKD_28")
head(kdSignature)

Get an overexpression signature (L1000 status is automatically detected)
oeSignature <- getSignature("LINCSOE_1000")
head(oeSignature)

Check the structure of retrieved signature
str(kdSignature)

investigateSignature Investigate a given DGE dataset [Stable]

Description

This function takes a DGE Data frame and then finds concordant signatures to that. This generates
an L1000 signature from the DGE dataset and then uploads that signature to iLINCS to find the
relevant concordant (or discordant) signatures

investigateSignature 51

Usage

investigateSignature(
expr,
outputLib,
filterThreshold = NULL,
filterProp = NULL,
similarityThreshold = 0.2,
paired = TRUE,
outputCellLines = NULL,
geneColumn = "Symbol",
logfcColumn = "logFC",
pvalColumn = "PValue”,
sourceName = "Input”,
sourceCellline = NA,
sourceTime = NA,
sourceConcentration = NA

)
Arguments
expr A dataframe that has differential gene expression analysis
outputLib The library to search
filterThreshold
The Filtering threshold.
filterProp The Filtering proportion.
similarityThreshold
The Similarity Threshold
paired Logical. Whether to query iLINCS separately for up and down regulated genes
outputCellLines
A character vector of cell lines to restrict the output search to.
geneColumn The name of the column that has gene symbols
logfcColumn The name of the column that has log_2 fold-change values
pvalColumn The name of the column that has p-values
sourceName (Optional) An annotation column to identify the signature by name

sourceCelllLine (Optional) An annotation column to specify the cell line for the input data

sourceTime (Optional) An annotation column to specify the time for the input data

sourceConcentration
(Optional) An annotation column to specify the concentration for the input data

Value

A tibble with the the similarity scores and signature metadata

52 investigateTarget

Examples

Input validation example (no API calls)
mockExpr <- data.frame(

Symbol = c("TP53", "MYC"),

logFC = c(2.5, -1.8),

PValue = c(0.001, 0.01)
)

Validate library parameter (should produce error)
tryCatch(
investigateSignature(mockExpr, outputLib = "INVALID"),
error = function(e) message("Expected error: invalid library")

This function makes multiple API calls to iLINCS and may take several minutes

Load differential expression data

inputSignature <- read.table(
system.file("extdata”, "dCovid_diffexp.tsv", package = "drugfindR"),
header = TRUE

)

Investigate the signature against chemical perturbagen library
investigatedSignature <- investigateSignature(

inputSignature,

outputLib = "CP",

filterThreshold = 0.5,

geneColumn = "hgnc_symbol”,

logfcColumn = "logFC",

pvalColumn = "PValue”

)

head(investigatedSignature)

investigateTarget Investigate concordant signatures for a gene or drug [Stable]

Description

Given the name of a target (gene knockdown/overexpression or compound) this high—level conve-
nience wrapper:

Usage

investigateTarget(
target,
inputLib,
outputLib,

investigateTarget 53

filterThreshold = .85,
similarityThreshold = 0.321,
paired = TRUE,
inputCelllLines = NULL,
outputCellLines = NULL

)
Arguments

target Character scalar. Gene symbol (for KD/OE libraries), or drug / compound name
(for CP library) used to locate source signatures.

inputLib Character ("OE", "KD", or "CP"). Library from which source signatures for
target are drawn.

outputLib Character ("OE", "KD", or "CP"). Library queried for concordant signatures.

filterThreshold
Numeric in \(0,1]. Minimum absolute (or directional) change used to retain
genes in each source signature prior to concordance. Default @.85 is conserva-
tive; consider lowering (e.g. @.5) for broader coverage.

similarityThreshold
Numeric in [0,1]. Minimum similarity score retained in the final consensus
result set. Default @.321 (~ upper third).

paired Logical. If TRUE (default) computes concordance separately for up and down

regulated gene sets; if FALSE uses all selected genes together.

inputCelllLines Optional character vector restricting the search for source signatures to specified
cell line(s). If NULL all available are considered.

outputCelllLines

Optional character vector restricting target signatures (during consensus forma-
tion) to specified cell line(s). If NULL all are considered.

Details

1. Locates iLINCS source signatures for the target in the specified input library.

2. Optionally filters by source cell line(s).

3. Retrieves each source signature and filters genes by direction and magnitude.

4. Queries iLINCS for concordant signatures in the chosen output library.

5. Computes paired or unpaired consensus concordance across up/down regulated sets.
6. Returns an augmented tibble of similarity scores and rich source/target metadata.

The paired workflow evaluates concordance separately for up- and down-regulated genes and then
combines (via consensusConcordants()) the two result sets. When paired = FALSE a single ag-
gregate signature (direction = "any") is used.

Network access: This function performs remote API calls (unless tests are run under a mocking
context such as httptest2: :with_mock_api()). Examples are wrapped in \donttest{} to avoid
false negatives on CRAN / Bioconductor builders without network access.

Errors are raised if:

54 investigateTarget

* No source signatures match target in the requested inputLib (empty set).
* Invalid library codes are supplied.
Internally this function orchestrates: getSignature(), filterSignature(), getConcordants()

and consensusConcordants(). It returns a vertically concatenated result across all matching
source signatures.

Value

A tibble (data frame) with one row per consensus concordant target signature. Typical columns
include:

* Source/Target — gene or compound names.

e Similarity — numeric concordance score in [-1,1].

* SourceSignature, TargetSignature — iLINCS signature identifiers.

* SourceCelllLine, TargetCelllLine — originating cell lines (if applicable).

* SourceConcentration, TargetConcentration — dosing information for CP.

* SourceTime, TargetTime — time point metadata.

Thresholds

» filterThreshold controls gene selection within each source signature. Itis passed to filterSignature()
as the absolute (or directional) threshold.

* similarityThreshold is applied when forming the consensus concordants to discard low
similarity entries.

See Also

getSignature(), filterSignature(), getConcordants(), consensusConcordants(), prepareSignature()
for lower-level operations.

Examples

Input validation examples (no API calls)

Demonstrate library parameter validation

tryCatch(
investigateTarget(target = "TP53", inputLib = "INVALID"”, outputLib = "CP"),
error = function(e) message("Expected error: invalid inputLib”)

)

tryCatch(
investigateTarget(target = "TP53", inputLib = "KD", outputLib = "INVALID"),
error = function(e) message("Expected error: invalid outputLib")

)

This function makes multiple API calls to iLINCS and may take several minutes
Basic paired investigation of a knockdown signature against compound library
set.seed(1)

prepareSignature 55

res <- investigateTarget(
target = "AATK",
inputLib = "KD",
outputLib = "CP",
filterThreshold = 0.5,
similarityThreshold = 0.3,
paired = TRUE

)

head(res)

Unpaired (aggregate) workflow — often faster, returns a single consensus set
res_unpaired <- investigateTarget(

target = "AATK", inputLib = "KD", outputLib = "CP",

filterThreshold = 0.5, similarityThreshold = 0.3, paired = FALSE
)

head(res_unpaired)

Restrict source signatures to specific cell lines (if available)
and target signatures to a subset of cell lines during consensus
res_filtered <- investigateTarget(

target = "AATK”, inputLib = "KD", outputLib = "CP",

outputCelllLines = c("MCF7"),

filterThreshold = 0.5, similarityThreshold = 0.3

)
head(res_filtered)

Using httptest2 (if installed) to mock network calls:

httptest2::with_mock_api({

mock_res <- investigateTarget("AATK", "KD", "CP", filterThreshold = 0.5)
print(head(mock_res))

#1)
prepareSignature Prepare an L1000 Signature from a given differential gene expression
output [Stable]
Description

This function takes a differential gene expression output from any pipeline like edgeR or DeSeq2
or any that give you the gene symbol, log_2 fold-change and p-value and transforms that into an
L1000 signature for later processing.

Usage

prepareSignature(
dge,
geneColumn = "Symbol",
logfcColumn = "logFC",
pvalColumn = "PValue”

56 prepareSignature

Arguments
dge A dataframe-like object that has the differential gene expression information
geneColumn The name of the column that has gene symbols
logfcColumn The name of the column that has log_2 fold-change values
pvalColumn The name of the column that has p-values
Value

A tibble with the L1000 signature.

Examples

Load example differential expression data from package

dge_file <- system.file("extdata”, "dCovid_diffexp.tsv",
package = "drugfindR"

)

dge_data <- read.delim(dge_file)

Prepare signature with p-values (standard workflow)
signature <- prepareSignature(

dge_data,

geneColumn = "hgnc_symbol”,

logfcColumn = "logFC",

pvalColumn = "PValue”

)

head(signature)

Prepare signature without p-values
signature_no_pval <- prepareSignature(
dge_data,
geneColumn = "hgnc_symbol”,
logfcColumn = "logFC",
pvalColumn = NA
)

head(signature_no_pval)

Custom column names example

custom_dge <- data.frame(
Gene = c("TP53", "MYC", "BRCA1", "EGFR"),
FC = ¢(2.5, -1.8, 3.2, -2.1),
Pval = c(0.001, 0.01, 0.0001, 0.005)

)

custom_signature <- prepareSignature(
custom_dge,
geneColumn = "Gene",

logfcColumn = "FC",
pvalColumn = "Pval”

)

print(custom_signature)

stoplfinvalidLibraries 57

stopIflnvalidlLibraries
Stop if the libraries are invalid

Description

This internal function validates library specifications and stops execution with an informative error
message if any invalid libraries are found.

Usage

stopIfinvalidlLibraries(libs)

Arguments
libs A character vector of library names to validate. Each library must be one of
IIOE"’ IIKDH, Or IICPH.
Details

This function validates that all provided library names are supported:

* "OE": Overexpression library (LIB_11)
* "KD": Knockdown library (LIB_6)
* "CP": Chemical Perturbagen library (LIB_5)

If any invalid libraries are found, the function provides a detailed error message listing the invalid
libraries and the expected options.

Value

Invisible NULL. The function throws an error if validation fails.

See Also

[validatelLibraries() 1 for the underlying validation logic, [.validatelLibrary() 1] for
single library validation

Examples

NULL

58 stopIfInvalidSignature

stopIfInvalidSignature
Validate signature data structure and content

Description

This function performs comprehensive validation of signature data to ensure it meets the require-
ments for iLINCS analysis.

Usage

stopIflInvalidSignature(signature)

Arguments
signature A data.frame-like object containing signature data that should be validated for
iLINCS compatibility.
Details

This function performs two main validation checks:

1. Column structure validation via . stopIfInvalidColNames()

2. Missing value validation via [.stopIfContainsMissingValues()]

The signature must have exactly the required columns in the correct order and cannot contain any
missing (NA) values.

Value

Invisible NULL. The function throws an error if validation fails.

See Also

[prepareSignature() 1] for preparing signatures that meet these requirements, [.stopIfInvalidColNames()]
for column validation details, [.stopIfContainsMissingValues()] for missing value valida-
tion details

Examples

NULL

targetRename 59

targetRename Rename target-related columns to user-facing output names

Description
Standardizes internal concordants/consensus column names to the user-facing output schema used
by this package.

Usage

targetRename (inputNames)

Arguments
inputNames Character vector of column names to rename. See Details for the expected input
ordering and mapping.
Details

Expected input columns (by position) are the internal concordants fields:

1. signatureid, 2) treatment (or compound pre-renaming),
2. cellline, 4) time, 5) concentration, 6) sig_direction,

3. sig_type, 8) similarity, 9) pValue.

These are mapped to the user-facing names returned by functions like consensusConcordants()
and downstream investigation helpers:

e TargetSignature, Target, TargetCelllLine, TargetTime, TargetConcentration, InputSigDirection,
SignatureType, Similarity, pValue.

Only the names are returned; the renaming is applied viadplyr: : rename_with(x, targetRename).

Value

Character vector of output (renamed) column names.

Examples

NULL

60 validateLibraries

validatelLibraries Check if multiple libraries are valid

Description

This function validates whether all provided library names are supported iLINCS library types.

Usage

validatelLibraries(libs)

Arguments

libs A character vector of library names to validate.

Details
This function uses .validatelLibrary() to check each library individually and returns TRUE only
if all libraries are valid. It’s used internally to validate library parameters before API calls.

Value

A logical value: TRUE if all libraries are valid, FALSE if any are invalid.

See Also

[.validateLibrary() 1 for single library validation, [stopIfInvalidLibraries()] for
validation with error handling

Examples

NULL

Index

* internal
.applyDirectionFilter, 5
.applySimilarityCutoff, 6
.applyTargetRenaming, 7
.calculateAbsoluteThresholds, 8
.calculateDoubleThreshold, 9
.calculateProportionalThreshold,

10

.calculateSingleThreshold, 12
.cleanupGetConcordants, 13
.combineConcordantsData, 13
.computeConsensusFromSignature, 14
.createSignatureRequest, 16
.detectSignatureDirection, 17
.executelIlincsRequest, 18
.executeSignatureRequest, 19
.filterByCelllLine, 20
.generatellincsRequest, 21
.groupByTargetAndSelectMax, 22
.ilincsBaseUrl, 23
.isValidSignatureld, 23
.loadMetadata, 24
.mapToL1000WithPvalues, 25
.mapToL1000WithoutPvalues, 25
.prepareSignatureFile, 26
.processConsensusPipeline, 26
.processIlincsResponse, 27
.processIlincsResponseEmpty, 28
.processIlincsResponseError, 29
.processIlincsResponseSuccess, 29
.processSignatureResponse, 30
.processSignatureResponseError, 31
.processSuccessfulResponse, 31
.processTolL1000@Signature, 32
.returnLibrary, 33
.returnResults, 34
.returnUserAgent, 35
.selectAndOrderResults, 35
.stopIfContainsMissingValues, 36

61

.stopIfInvalidColNames, 37
.validateConsensusConcordantsInput
38
.validateFilterSignatureInput, 39
.validateGetConcordantsInput, 40
.validateGetSignaturelnput, 41
.validatelLibrary, 42
.validatePrepareSignatureInput, 42
drugfindR-package, 3
stopIfinvalidlLibraries, 57
stopIfInvalidSignature, 58
targetRename, 59
validateLibraries, 60

.applyDirectionFilter, 5
.applySimilarityCutoff, 6
.applyTargetRenaming, 7
.calculateAbsoluteThresholds, 8
.calculateDoubleThreshold, 9
.calculateProportionalThreshold, 10
.calculateSingleThreshold, 12
.cleanupGetConcordants, 13
.combineConcordantsData, 13
.computeConsensusFromSignature, 14
.createSignatureRequest, 16
.detectSignatureDirection, 17
.executellincsRequest, 18
.executeSignatureRequest, 19
.filterByCelllLine, 20
.generatellincsRequest, 21
.groupByTargetAndSelectMax, 22
.ilincsBaseUrl, 23
.isValidSignatureld, 23
.loadMetadata, 24
.mapToL100eWithPvalues, 25
.mapToL100eWithoutPvalues, 25
.prepareSignatureFile, 26
.processConsensusPipeline, 26
.processllincsResponse, 27
.processllincsResponseEmpty, 28

62 INDEX

.processIlincsResponseError, 29
.processIlincsResponseSuccess, 29
.processSignatureResponse, 30
.processSignatureResponseError, 31
.processSuccessfulResponse, 31
.processTolL1000Signature, 32
.returnLibrary, 33
.returnResults, 34
.returnUserAgent, 35
.selectAndOrderResults, 35
.stopIfContainsMissingValues, 36
.stopIfInvalidColNames, 37
.stopIfInvalidColNames(), 58
.validateConsensusConcordantsInput, 38
.validateFilterSignatureInput, 39
.validateFilterSignaturelnput(), 15
.validateGetConcordantsInput, 40
.validateGetSignaturelInput, 41
.validatelLibrary, 42
.validatelLibrary(), 60
.validatePrepareSignaturelnput, 42

consensusConcordants, 43
consensusConcordants(), 14, 15, 53, 54, 59

drugfindR (drugfindR-package), 3
drugfindR-package, 3

filterSignature, 45
filterSignature(), 15, 54

getConcordants, 47
getConcordants(), 15, 54
getSignature, 49
getSignature(), 15, 54

investigateSignature, 50
investigateTarget, 52

prepareSignature, 55
prepareSignature(), 15,47, 54

stopIfinvalidlLibraries, 57
stopIfinvalidlLibraries(), 15
stopIflInvalidSignature, 58
stopIflnvalidSignature(), 15

targetRename, 59

validatelLibraries, 60

	drugfindR-package
	.applyDirectionFilter
	.applySimilarityCutoff
	.applyTargetRenaming
	.calculateAbsoluteThresholds
	.calculateDoubleThreshold
	.calculateProportionalThreshold
	.calculateSingleThreshold
	.cleanupGetConcordants
	.combineConcordantsData
	.computeConsensusFromSignature
	.createSignatureRequest
	.detectSignatureDirection
	.executeIlincsRequest
	.executeSignatureRequest
	.filterByCellLine
	.generateIlincsRequest
	.groupByTargetAndSelectMax
	.ilincsBaseUrl
	.isValidSignatureId
	.loadMetadata
	.mapToL1000WithoutPvalues
	.mapToL1000WithPvalues
	.prepareSignatureFile
	.processConsensusPipeline
	.processIlincsResponse
	.processIlincsResponseEmpty
	.processIlincsResponseError
	.processIlincsResponseSuccess
	.processSignatureResponse
	.processSignatureResponseError
	.processSuccessfulResponse
	.processToL1000Signature
	.returnLibrary
	.returnResults
	.returnUserAgent
	.selectAndOrderResults
	.stopIfContainsMissingValues
	.stopIfInvalidColNames
	.validateConsensusConcordantsInput
	.validateFilterSignatureInput
	.validateGetConcordantsInput
	.validateGetSignatureInput
	.validateLibrary
	.validatePrepareSignatureInput
	consensusConcordants
	filterSignature
	getConcordants
	getSignature
	investigateSignature
	investigateTarget
	prepareSignature
	stopIfInvalidLibraries
	stopIfInvalidSignature
	targetRename
	validateLibraries
	Index

