The chromstaR user’s guide

Aaron Taudt*

*aaron.taudt@gmail.com

December 18, 2024

Contents

1 Introduction 2
2 Citation. 2
3 Outlineofworkflow. 2
4 Univariate analysis 2
4.1 Task 1: Peak calling for a narrow histone modification 2
4.2 Task 2: Peak calling for a broad histone modification. 4
4.3 Task 3: Peak calling for ATAC-seq, DNase-seq, FAIRE-seq, 6
5 Multivariate analysis 6
5.1 Task 1: Integrating multiple replicates 6
5.2 Task 2: Detecting differentially modified regions 7
5.3 Task 3: Finding combinatorial chromatin states 9
5.4 Task 4: Finding differences between combinatorial chromatin states 14
6 Output of function Chromstar() 17
7 FAQ 18

7.1 The peak calls are too lenient. Can | adjust the strictness of the
peakcalling?. 18

7.2 The combinatorial differences that chromstaR gives me are not con-
vincing. Is there a way to restrict the results to a more convincing

set? . .o e 20
7.3 How do | plot a simple heatmap with the combinations? 20
7.4 Examples of problematic distributions.. 21

mailto:aaron.taudt@gmail.com

The chromstaR user’s guide

Warning in fun(libname, pkgname): Package ’'chromstaR’ is deprecated and will
be removed from
Bioconductor version 3.22

Introduction

ChlIP-seq has become the standard technique for assessing the genome-wide chromatin state
of DNA. chromstaR provides functions for the joint analysis of multiple ChlP-seq samples.
It allows peak calling for transcription factor binding and histone modifications with a nar-
row (e.g. H3K4me3, H3K27ac, ...) or broad (e.g. H3K36me3, H3K27me3, ...) profile.
All analysis can be performed on each sample individually (=univariate), or in a joint anal-
ysis considering all samples simultaneously (=multivariate). The joint analysis is generally
recommended because it is more powerful for detecting differences.

Citation

If you use chromstaR for chromatin state analysis, please cite [1]:

Taudt, A., Nguyen, M. A., Heinig, M., Johannes, F. and Colome-Tatche, M. chromstaR:
Tracking combinatorial chromatin state dynamics in space and time. bioRxiv (Cold
Spring Harbor Labs Journals, 2016). doi:10.1101/038612

If you use chromstaR for differential ChlP-seq analysis, please cite [1] and [2]:

Hanna, C. W., Taudt, A., Huang, J., Gahurova, L., Kranz, A., Andrews, S., Dean, W., Stew-
art, A. F., Colome-Tatche, M. and Kelsey, G. MLL2 conveys transcription-independent
H3K4 trimethylation in oocytes. Nat. Struct. Mol. Biol. 1 (2018). doi:10.1038/s41594-
017-0013-5

Outline of workflow

Every analysis with the chromstaR package starts from aligned reads in either BAM or BED
format. In the first step, the genome is partitioned into non-overlapping, equally sized bins
and the reads that fall into each bin are counted. These read counts serve as the basis for
both the univariate and the multivariate peak- and broad-region calling. Univariate peak
calling is done by fitting a three-state Hidden Markov Model to the binned read counts.
Multivariate peak calling for S samples is done by fitting a 25-state Hidden Markov Model
to all binned read counts.

Univariate analysis

Task 1: Peak calling for a narrow histone modification

Examples of histone modifications with a narrow profile are H3K4me3, H3K9ac and H3K27ac
in most human tissues. For such peak-like modifications, the bin size should be set to a value
between 200bp and 1000bp.

library(chromstaR)

The chromstaR user’s guide

=== Step 1: Binning =

Get an example BAM file

file <- system.file("extdata","euratrans","lv-H3K4me3-BN-male-bio2-techl.bam",
package="chromstaRData")

Get the chromosome lengths (see ?GenomeInfoDb: :fetchExtendedChromInfoFromUCSC)

This is only necessary for BED files. BAM files are handled automatically.

data(rn4_chrominfo)

head(rn4_chrominfo)

chromosome length
1 chrM 16300
2 chrl2 46782294
3 chr20 55268282
4 chrl9 59218465
5 chrl8 87265094
6 chrll 87759784

We use bin size 1000bp and chromosome 12 to keep the example quick
binned.data <- binReads(file, assembly=rn4_chrominfo, binsizes=1000,

stepsizes=500, chromosomes='chri2')
print(binned.data)

GRanges object with 46782 ranges and 1 metadata column:

segnames ranges strand | counts
<Rle> <IRanges> <Rle> | <matrix>
[1] chrl2 1-1000 * | 0:0
[2] chrl2 1001-2000 * | 0:0
[3] chril2 2001-3000 * | 0:0
[4] chril2 3001-4000 * | 0:0
[5]1 chrl2 4001-5000 * | 0:0
##

[46778] chrl2 46777001-467738000
[46779] chrl2 46778001-46779000
[46780] chrl2 46779001-46780000
[46781] chrl2 46780001-46781000
[46782] chrl2 46781001-46782000
#H -

seqinfo: 1 sequence from an unspecified genome

PN RN
o wo o w:-

EE S S

=== Step 2: Peak calling ===
model <- callPeaksUnivariate(binned.data, verbosity=0)

=== Step 3: Checking the fit ===

For a narrow modification, the fit should look something like this,
with the 'modified'-component near the bottom of the figure
plotHistogram(model) + ggtitle('H3K4me3')

Warning: The dot-dot notation (‘..density..‘) was deprecated in ggplot2 3.4.0.

1 Please use ‘after_stat(density)‘ instead.

1 The deprecated feature was likely used in the chromstaR package.

Please report the issue at <https://github.com/ataudt/chromstaR/issues>.

This warning is displayed once every 8 hours.

Call ‘lifecycle::last_lifecycle_warnings()‘ to see where this warning was generated.

H3K4me3
0.5+
components
= unmodified, mean=1.23, var=2.15, weight=0.89
0.4+ = modified, mean=66.09, var=9976.9, weight=0.11
— total, mean(data)=8.41, var(data)=1999.65
0.3+
2
@
c
Q
© 0.2
0.1+
0.0+
0 5 10
read count

We can also check a browser snapshot of the data
plotGenomeBrowser(model, chr='chrl2', start=1, end=1e6)[[1]]

The chromstaR user’s guide

4.2

browser_snapshot

o o
I

il
11 | I
0 250000 500000 750000 1000000
position

RPKM

0-

-

=== Step 4: Working with peaks ===
Get the number and average size of peaks
length(model$peaks); mean(width(model$peaks))

[1] 1245
[1] 4008.434

Adjust the sensitivity and get number of peaks
model <- changeMaxPostCutoff(model, maxPost.cutoff=0.9999)
length(model$peaks); mean(width(model$peaks))

[1] 913
[1] 4861.993

=== Step 5: Export to genome browser ===

We can export peak calls and binned read counts with
exportPeaks(model, filename=tempfile())
exportCounts(model, filename=tempfile())

I It is important that the distributions are fitted correctly !! Please check section 7.4
for examples of how this plot should not look like and what can be done to get a correct fit.

Task 2: Peak calling for a broad histone modification

Examples of histone modifications with a broad profile are H3K9me3, H3K27me3, H3K36me3,
H4K20mel in most human tissues. These modifications usually cover broad domains of the
genome, and the enrichment is best captured with a bin size between 500bp and 2000bp.

library(chromstaR)

=== Step 1: Binning ===

Get an example BAM file

file <- system.file("extdata","euratrans","lv-H3K27me3-BN-male-bio2-techl.bam",
package="chromstaRData")

Get the chromosome lengths (see ?GenomeInfoDb: :fetchExtendedChromInfoFromUCSC)

This is only necessary for BED files. BAM files are handled automatically.

data(rn4_chrominfo)

head(rn4_chrominfo)

We use bin size 1000bp and chromosome 12 to keep the example quick

binned.data <- binReads(file, assembly=rn4_chrominfo, binsizes=1000,
stepsizes=500, chromosomes='chrl2")

=== Step 2: Peak calling ===
model <- callPeaksUnivariate(binned.data, verbosity=0)

=== Step 3: Checking the fit ===

For a broad modification, the fit should look something like this,

with a 'modified'-component that fits the thick tail of the distribution.
plotHistogram(model) + ggtitle('H3K27me3')

H3K27me3
components
0.20
== unmodified, mean=2.56, var=6.25, weight=0.51
= modified, mean=18.27, var=182.05, weight=0.49
015 = total, mean(data)=9.86, var(data)=193.69
2
@
$ 0.10
©
005 \
N\
0.00 LITTErres
0 20 4

read count

The chromstaR user’s guide

plotGenomeBrowser(model, chr='chrl2', start=1, end=1e6)[[1]]

browser_snapshot
128-

=
<
T
4
o- ITTIPRNINOI TR ORI Jm
[
0 500000 750000 1000000
position
=== Step 4: Working with peaks ===

peaks <- model$peaks
length(peaks); mean(width(peaks))

[1] 523
[1] 43522.94

Adjust the sensitivity and get number of peaks

model <- changeMaxPostCutoff(model, maxPost.cutoff=0.9999)
peaks <- model$peaks

length(peaks); mean(width(peaks))

[1] 416
[1] 52582.93

=== Step 5: Export to genome browser ===

We can export peak calls and binned read counts with
exportPeaks(model, filename=tempfile())
exportCounts(model, filename=tempfile())

=== Step 1-3: Another example for mark H4K20mel ===

file <- system.file("extdata","euratrans","lv-H4K20mel-BN-male-biol-techl.bam",
package="chromstaRData")

data(rn4_chrominfo)

binned.data <- binReads(file, assembly=rn4_chrominfo, binsizes=1000,
stepsizes=500, chromosomes='chrl2")

model <- callPeaksUnivariate(binned.data, max.time=60, verbosity=0)

plotHistogram(model) + ggtitle('H4K20mel')

H4K20mel
components
0.15
== unmodified, mean=7.41, var=31.56, weight=0.67
== modified, mean=91.95, var=5054.18, weight=0.33
— total, mean(data)=34.67, var(data)=3562.69
0.10
2
@
c
3]
©
0.05
0.00
[20 40 60 80

read count

We can also check a browser snapshot of the data
plotGenomeBrowser(model, chr='chrl2', start=1, end=1e6)[[1]]

browser_snapshot

=
4
: Jd
0- A PP I — Y Yty .“M -
1 1l 1 [
0 250000 500000 750000 1000000
position

Il It is important that the distributions are fitted correctly !! Please check section 7.4
for examples of how this plot should not look like and what can be done to get a correct fit.

The chromstaR user’s guide

4.3

Task 3: Peak calling for ATAC-seq, DNase-seq, FAIRE-seq,

Peak calling for ATAC-seq and DNase-seq is similar to the peak calling of a narrow histone
modification (section 4.1). FAIRE-seq experiments seem to exhibit a broad profile with our
model, so the procedure is similar to the domain calling of a broad histone modification
(section 4.2).

Multivariate analysis

Task 1: Integrating multiple replicates

chromstaR can be used to call peaks with multiple replicates, without the need of prior
merging. The underlying statistical model integrates information from all replicates to identify
common peaks. It is, however, important to note that replicates with poor quality can affect
the joint peak calling negatively. It is therefore recommended to first check the replicate
quality and discard poor-quality replicates. The necessary steps for peak calling for an example
ChlIP-seq experiment with 4 replicates are detailed below.

Please note that also the other tasks in this section (Task 5.2, 5.3 and 5.4) can handle mul-
tiple replicates via specification of the experiment.table parameter. The following example
demonstrates how to explicitly use multiple replicates for peak calling and their correlation

as a basic quality control.
library(chromstaR)

#=== Step 1: Preparation ===

Let's get some example data with 3 replicates in spontaneous hypertensive rat (SHR)
file.path <- system.file("extdata","euratrans", package='chromstaRData')

files.good <- list.files(file.path, pattern="H3K27me3.x*SHR.x*bam$", full.names=TRUE)[1:3]
We fake a replicate with poor quality by taking a different mark entirely
files.poor <- list.files(file.path, pattern="H4K20mel.*SHR.x*bam$", full.names=TRUE)[1]
files <- c(files.good, files.poor)

Obtain chromosome lengths. This is only necessary for BED files. BAM files are

handled automatically.

data(rn4_chrominfo)

head(rn4_chrominfo)

chromosome length

1 chrM 16300
2 chrl2 46782294
3 chr20 55268282
4 chrl9 59218465
5 chrl8 87265094
6 chrll 87759784

Define experiment structure
exp <- data.frame(file=files, mark='H3K27me3', condition='SHR', replicate=1:4,
pairedEndReads=FALSE, controlFiles=NA)

Peaks could now be called with

Chromstar(inputfolder=file.path, experiment.table=exp, outputfolder=tempdir(),
mode = 'separate')

However, to get more information on the replicates we will choose

a more detailed workflow.

=== Step 2: Binning ===
We use bin size 1000bp and chromosome 12 to keep the example quick
binned.data <- list()
for (file in files) {
binned.data[[basename(file)]] <- binReads(file, binsize=1000, stepsizes=500,
assembly=rn4_chrominfo, chromosomes='chril2',
experiment.table=exp)

The chromstaR user’s guide

5.2

=== Step 3: Univariate peak calling ===

The univariate fit is obtained for each replicate

models <- Llist()

for (il in 1:length(binned.data)) {
models[[i1l]] <- callPeaksUnivariate(binned.data[[il]], max.time=60)
plotHistogram(models[[il1]])

}

! It is important that the distributions are fitted correctly !! Please check section 7.4 for examples of how this plot should
not look like and what can be done to get a correct fit.

=== Step 4: Check replicate correlation ===

We run a multivariate peak calling on all 4 replicates

A warning is issued because replicate 4 is very different from the others
multi.model <- callPeaksReplicates(models, max.time=60, eps=1)

HMM: number of states = 16

HMM: number of bins = 46782

HMM: maximum number of iterations = none
HMM: maximum running time = 60 sec

HVM: epsilon =1

HMM: number of experiments = 4

TIteration log(P) dlog(P) Time in sec
0 -inf = 0
HMM: Precomputing densities ...

Iteration log(P) dlog(P) Time in sec
#i# 0 -inf - 0
1 -542989.146422 inf 0
2 -538374.740061 4614.406361 0
3 -538271.399633 103.340428 1
4 -538250.213731 21.185902 1
#i#t 5 -538244.134929 6.078802 1
6 -538241.935146 2.199784 1
7 -538240.963921 0.971224 1

HMM: Convergence reached!
HMM: Recoding posteriors ...

Warning in callPeaksReplicates(models, max.time = 60, eps = 1): Your replicates cluster in 2 groups. Consider
redoing your analysis with only the group with the highest average coverage:

H3K27me3-SHR-repl

H3K27me3-SHR-rep2

H3K27me3-SHR-rep3

Replicates from groups with lower coverage are:

H3K27me3-SHR-rep4

Checking the correlation confirms that Rep4 is very different from the others
print(multi.model$replicateInfo$correlation)

H3K27me3-SHR-repl H3K27me3-SHR-rep2 H3K27me3-SHR-rep3 H3K27me3-SHR-rep4
H3K27me3-SHR-repl 1.0000000 0.9999358 0.9997432 -0.3718157
H3K27me3-SHR-rep2 0.9999358 1.0000000 0.9997217 -0.3717750
H3K27me3-SHR-rep3 0.9997432 0.9997217 1.0000000 -0.3716530
H3K27me3-SHR-rep4 -0.3718157 -0.37177560 -0.3716530 1.0000000
=== Step 5: Peak calling with replicates ===

We redo the previous step without the "bad" replicate
Also, we force all replicates to agree in their peak calls
multi.model <- callPeaksReplicates(models[1:3], force.equal=TRUE, max.time=60)

=== Step 6: Export to genome browser ===

Finally, we can export the results as BED file
exportPeaks (multi.model, filename=tempfile())
exportCounts(multi.model, filename=tempfile())

Task 2: Detecting differentially modified regions

chromstaR is extremely powerful in detecting differentially modified regions in two or more
samples. The following example illustrates this on ChlP-seq data for H4K20mel in brown
norway (BN) and spontaneous hypertensive rat (SHR) in left-ventricle (lv) heart tissue. The

mode of analysis is called differential.
library(chromstaR)

The chromstaR user’s guide

#=== Step 1: Preparation ===

Prepare the file paths. Exchange this with your input and output directories
inputfolder <- system.file("extdata","euratrans", package="chromstaRData")
outputfolder <- file.path(tempdir(), 'H4K20mel-example')

Define experiment structure, put NA if you don't have controls
data(experiment_table_H4K20mel)
print(experiment_table_H4K20mel)

file mark condition replicate pairedEndReads
1 1v-H4K20mel-BN-male-biol-techl.bam H4K20mel BN 1 FALSE
2 1v-H4K20mel-BN-male-bio2-techl.bam H4K20mel BN 2 FALSE
3 1v-H4K20mel-SHR-male-biol-techl.bam H4K20mel SHR 1 FALSE
controlFiles

1 lv-input-BN-male-biol-techl.bam|lv-input-BN-male-biol-tech2.bam
2 lv-input-BN-male-biol-techl.bam|lv-input-BN-male-biol-tech2.bam
3 lv-input-SHR-male-biol-techl.bam

Define assembly

This is only necessary if you have BED files, BAM files are handled automatically.
For common assemblies you can also specify them as 'hgl9' for example.
data(rn4_chrominfo)

head(rn4_chrominfo)

chromosome length
1 chrM 16300
2 chrl2 46782294
3 chr20 55268282
4 chr1l9 59218465
5 chrl8 87265094
6 chrll 87759784

#=== Step 2: Run Chromstar ===

Run ChromstaR

Chromstar(inputfolder, experiment.table=experiment_table_H4K20mel,
outputfolder=outputfolder, numCPU=4, binsize=1000, stepsize=500,
assembly=rn4_chrominfo, prefit.on.chr='chrl2', chromosomes='chri2"',
mode="differential')

Results are stored in 'outputfolder' and can be loaded for further processing
list.files(outputfolder)

[1] "BROWSERFILES" "PLOTS" "README. txt" "binned"
[5] "chrominfo.tsv" "chromstaR.config" "combined" "experiment_table.tsv"
[9] "multivariate" "univariate"

model <- get(load(file.path(outputfolder, ‘multivariate’,
‘multivariate_mode-differential_mark-H4K20mel binsizel000_stepsize500.RData')))

I It is important that the distributions in folder outputfolder/PLOTS /univariate-distributions are fitted correctly !!
Please check section 7.4 for examples of how this plot should not look like and what can be done to get a correct fit.

=== Step 3: Construct differential and common states ===

diff.states <- stateBrewer(experiment_table_H4K20mel, mode='differential',
differential.states=TRUE)

print(diff.states)

combination state
1 [SHR] 1
2 [BN] 6

common.states <- stateBrewer(experiment_table_H4K20mel, mode='differential',
common.states=TRUE)
print(common.states)

combination state

1 [1 0
2 [BN+SHR] 7
=== Step 5: Export to genome browser ===

Export only differential states

exportPeaks(model, filename=tempfile())

exportCounts(model, filename=tempfile())

exportCombinations(model, filename=tempfile(), include.states=diff.states)

The chromstaR user’s guide

5.3

Task 3: Finding combinatorial chromatin states

Most experimental studies that probe several histone modifications are interested in combina-
torial chromatin states. An example of a simple combinatorial state would be [H3K4me34+H3K27me3],
which is also frequently called “bivalent promoter”, due to the simultaneous occurrence of
the promoter marking H3K4me3 and the repressive H3K27me3. Finding combinatorial states
with chromstaR is equivalent to a multivariate peak calling. The following code chunks
demonstrate how to find bivalent promoters and do some simple analysis. The mode of

analysis is called combinatorial.
library(chromstaR)

#=== Step 1: Preparation ===
Prepare the file paths. Exchange this with your input and output directories

inputfolder <- system.file("extdata","euratrans", package="chromstaRData")
outputfolder <- file.path(tempdir(), 'SHR-example')

Define experiment structure, put NA if you don't have controls
(SHR = spontaneous hypertensive rat)

data(experiment_table_SHR)

print(experiment_table_SHR)

file mark condition replicate pairedEndReads
1 1v-H3K27me3-SHR-male-bio2-techl.bam H3K27me3 SHR 1 FALSE
2 1v-H3K27me3-SHR-male-bio2-tech2.bam H3K27me3 SHR 2 FALSE
3 1v-H3K4me3-SHR-male-bio2-techl.bam H3K4me3 SHR 1 FALSE
4 1v-H3K4me3-SHR-male-bio3-techl.bam H3K4me3 SHR 2 FALSE
controlFiles

1 lv-input-SHR-male-biol-techl.bam

1
2 lv-input-SHR-male-biol-techl.bam
3 lv-input-SHR-male-biol-techl.bam
4 lv-input-SHR-male-biol-techl.bam

Define assembly

This is only necessary if you have BED files, BAM files are handled automatically.
For common assemblies you can also specify them as 'hgl9' for example
data(rn4_chrominfo)

head(rn4_chrominfo)

chromosome length

##t chrM 16300
chrl2 46782294
chr20 55268282

chrl8 87265094

1
2
3
4 chrl9 59218465
5
6 chrll 87759784

#=== Step 2: Run Chromstar ===

Run ChromstaR

Chromstar(inputfolder, experiment.table=experiment_table_SHR,
outputfolder=outputfolder, numCPU=4, binsize=1000, stepsize=500,
assembly=rn4_chrominfo, prefit.on.chr='chrl2', chromosomes='chril2"',
mode="'combinatorial')

I It is important that the distributions in folder outputfolder/PLOTS /univariate-distributions are fitted correctly !!
Please check section 7.4 for examples of how this plot should not look like and what can be done to get a correct fit.

Results are stored in 'outputfolder' and can be loaded for further processing
list.files(outputfolder)

[1] "BROWSERFILES" "PLOTS" "README . txt" "binned"
[5] "chrominfo.tsv" "chromstaR.config" "combined" "experiment_table.tsv"
[9] "multivariate" "univariate"

model <- get(load(file.path(outputfolder, ‘multivariate’,
'multivariate_mode-combinatorial_condition-SHR_binsizel000_stepsize500.RData')))

Obtain genomic frequencies for combinatorial states

genomicFrequencies(model)

$frequency

##
[] [H3K4me3] [H3K27me3] [H3K27me3+H3K4me3]
0.41193194 0.09392501 0.43134111 0.06280193
##

$domains

The chromstaR user’s guide

##
[1 [H3K4me3] [H3K27me3] [H3K27me3+H3K4me3]
1188 683 1166 893

Plot transition probabilities and read count correlation
heatmapTransitionProbs(model) + ggtitle('Transition probabilities')

Transition probabilitigsop,

[H3K4me3] -
0.75
£ 0-
2 0.50
B [H3K27me3] - .
[H3K27me3+H3K4me3] - 0.25
\]]]
o o =
Q Q Q
£ £ £
S5 S
o« % (82
Tz =S
& T
Q
£
=
N
X
o«
<
to

heatmapCountCorrelation(model) + ggtitle('Read count correlation')

Read count correlaiiation

H3K27me3-SHR-rep2 - 100
H3K27me3-SHR-repl - 075
H3K4me3-SHR-rep2 - 0.50
H3K4me3-SHR-repl - 0.25
0.00

H3K4me3-SHR-repl -
H3K4me3-SHR-rep2 -
H3K27me3-SHR-repl -
H3K27me3-SHR-rep2 -

=== Step 3: Enrichment analysis ===
Annotations can easily be obtained with the biomaRt package. Of course, you can
also load them from file if you already have annotation files available.

library(biomaRt)
ensembl <- useEnsembl(biomart='ENSEMBL_MART_ENSEMBL', dataset='rnorvegicus_gene_ensembl')
genes <- getBM(attributes=c('ensembl_gene_id', 'chromosome_name', 'start_position',

‘end_position', ‘'strand', 'external_gene_name',
'gene_biotype'),
mart=ensembl)
Transform to GRanges for easier handling
genes <- GRanges(seqnames=paste0('chr',genes$chromosome_name),
ranges=IRanges (start=genes$start, end=genes$end),
strand=genes$strand,
name=genes$external_gene_name, biotype=genes$gene_biotype)
Rename chrMT to chrM to avoid warnings
seqlevels(genes) [seqlevels(genes)=="'chrMT'] <- 'chrM'
Select only chrl2 to avoid warnings
genes <- keepSeqlevels(genes, 'chrl2', pruning.mode = 'coarse')
print(genes)

GRanges object with 918 ranges and 2 metadata columns:

seqnames ranges strand | name biotype
<Rle> <IRanges> <Rle> | <character> <character>
[1] chrl2 32071693-32109938 + | Rilpll protein_coding
[2] chrl2 32110993-32122660 - Snrnp35 protein_coding
[3] chrl2 31296156-31362647 + | Scarbl protein_coding
[4] chrl2 33514230-33529931 + | Morn3 protein_coding
[5] chrl2 33534344-33548405 - Orail protein_coding
500 000 000 coo o 000 oo

[914] chrl2 46454870-46500509 - Golga3 protein_coding

[915] chrl2 46504497-46538014 - Chfr protein_coding

The chromstaR user’s guide

[916] chrl2 46545073-46575828 | Zfp605 protein_coding
[917] chrl2 46574435-46578873 + | Gtpbp6 protein_coding
[918] chrl2 46345420-46393939 - Pole protein_coding
#Ho-------

seqinfo: 1 sequence from an unspecified genome; no seglengths

We expect promoter [H3K4me3] and bivalent-promoter signatures [H3K4me3+H3K27me3]
to be enriched at transcription start sites.
plotEnrichment(hmm = model, annotation = genes, bp.around.annotation = 15000) +
ggtitle('Fold enrichment around genes') +
xlab('distance from gene body')

Fold enrichment around genes

0.2+

combination

0.0 -
[H3K4me3]
[H3K27me3]

0.2 mm [H3K27me3+H3K4me3]

log(observed/expected)

-0.44

-15000 7500 0% 50% 100% 7500 15000
distance from gene body

Plot enrichment only at TSS. We make use of the fact that TSS is the start of a gene.
plotEnrichment(model, genes, region = 'start') +

ggtitle('Fold enrichment around TSS') +

xlab('distance from TSS in [bp]l')

Fold enrichment around TSS

0.04 combination

- [
[H3K4me3]
[H3K27me3]

-0.24 = [H3K27me3+H3K4me3]

log(observed/expected)

-0.44

10000 5000 5000 10000

0
distance from TSS in [bp]

Note: If you want to facet the plot because you have many combinatorial states you
can do that with
plotEnrichment(model, genes, region = 'start') +

facet_wrap(~ combination) + ggtitle('Fold enrichment around TSS')

The chromstaR user’s guide

log(observed/expected)

Fold enrichment around TSS

0 [H3K4me3]

027 ot e o

[e i fl e R e T R
0.2+
0.4+

[H3K27me3] [H3K27me3+H3K4me3]
0.24
0.0

-0.24

-0.44

T
-10000

T T T T T
-5000 0 5000 1000610000

T T T T
-5000 0 5000 10000

distance from annotation in [bp]

Another form of visualization that shows every TSS in a heatmap
tss <- resize(genes, width = 3, fix = 'start')
plotEnrichCountHeatmap(model, tss, bp.around.annotation = 15000) +
= element_text(size=6)) +
scale_x_continuous (breaks=c(-10000,0,10000)) +
ggtitle('Read count around TSS')

theme(strip.text.x

Read count around TSS

-10000 O

D D:

10000 -10000 O 10000 -10000 O
distance from annotation in [bp]

p: H3K4me3-SHR-rep2

10000 -10000 0 10000

Fold enrichment with different biotypes, showing that protein coding genes are
enriched with (bivalent) promoter combinations [H3K4me3] and [H3K4me3+H3K27me3],
while rRNA is enriched with the empty [] combination.
biotypes <- split(tss, tss$biotype)
plotFoldEnrichHeatmap(model, annotations=biotypes) + coord_flip() +
ggtitle('Fold enrichment with different biotypes')

combination
-]
[H3K4me3]
we [H3K27me3]
mmm [H3K27me3+H3K4me3]

combination

[[
. [H3K4me3]

[H3K27me3]
[H3K27me3+H3K4me3]
RPKM

B

Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): collapsing to unique ’'x’ values

Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): collapsing to unique ’'x’ values

Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm): collapsing to unique ’x’ values

12

The chromstaR user’s guide

Fold enrichment with different biotypes

H3K27me3+H3K4me3] -
!] log(observed/expected)
2 [H3K27me3] - 3
i
-g 0
S [H3K4me3] -
) II .
- -6
. . . ' '
< < < o o o < e < < <
P4 P4 Z S < S P4 E P4 P4 P4
4 4 o S 3 S © > @ 4 4
2 £ o 8 S S - S g 3 2
£ 3 3 (-1 2 3 &
€ D s o =
£ 9 T %
2 3 3
< &
Q
3
?
[
8
o
s
annotation
=== Step 4: Expression analysis ===

Suppose you have expression data as well for your experiment. The following code
shows you how to get the expression values for each combinatorial state
data(expression_1lv)

head(expression_1lv)

ensembl_gene_id expression_BN expression_SHR
1 ENSRNOGOOO00000001 8.8 7.4
2 ENSRNOGOOO00000007 20.0 13.0
3 ENSRNOGOOO00000008 1.8 3.4
4 ENSRNOGO0000000010 6.2 506.8
5 ENSRNOGO0000000012 48.0 36.4
6 ENSRNOGOO000000014 18.2 15.2

We need to get coordinates for each of the genes

library(biomaRt)
ensembl <- useEnsembl(biomart='ENSEMBL_MART_ENSEMBL', dataset='rnorvegicus_gene_ensembl')
genes <- getBM(attributes=c('ensembl_gene_id', 'chromosome_name', 'start_position',

‘end_position', ‘'strand', 'external_gene_name',
‘gene_biotype'),
mart=ensembl)
expr <- merge(genes, expression_lv, by='ensembl_gene_id')
Transform to GRanges
expression.SHR <- GRanges(seqnames=paste0('chr',expr$chromosome_name),
ranges=IRanges (start=expr$start, end=exprs$end),
strand=expr$strand, name=expr$external_gene_name,
biotype=expr$gene_biotype,
expression=expr$expression_SHR)
Rename chrMT to chrM to avoid warnings
seqlevels(expression.SHR) [seqlevels(expression.SHR)=='chrMT'] <- ‘chrM'
We apply an asinh transformation to reduce the effect of outliers
expression.SHR$expression <- asinh(expression.SHR$expression)

Plot

plotExpression(model, expression.SHR) +
theme (axis.text.x=element_text(angle=0, hjust=0.5)) +
ggtitle('Expression of genes overlapping combinatorial states')

Expression of genes overlapping combinatorial states

expression

[H3K27me3+H3Kame3)] [H3K27me3] [H3K4me3] 0
combination

plotExpression(model, expression.SHR, return.marks=TRUE) +
ggtitle('Expression of marks overlapping combinatorial states')

The chromstaR user’s guide

5.4

Expression of marks overlapping combinatorial states

expression

HaK4me3- ®:

mark

Task 4: Finding differences between combinatorial chromatin
states

Consider bivalent promoters defined by [H3K4me3+H3K27me3] at two different developmen-
tal stages, or in two different strains or tissues. This is an example where one is interested in
differences between combinatorial states. The following example demonstrates how such an
analysis can be done with chromstaR. We use a data set from the Euratrans project (down-
sampled to chr12) to find differences in bivalent promoters between brown norway (BN) and
spontaneous hypertensive rat (SHR) in left-ventricle (Iv) heart tissue.

Chromstar can be run in 4 different modes:

= full: Recommended mode if your (number of marks) * (number of conditions) is less

or equal to 8. With 8 ChlP-seq experiments there are already 2% = 256 combinatorial
states which is the maximum that most computers can handle computationally for a
human-sized genome at bin size 1000bp.

DEFAULT differential: Choose this mode if you are interested in highly significant
differences between conditions. The computational limit for the number of conditions
is ~ 8 for a human-sized genome. Combinatorial states are not as accurate as in mode
combinatorial or full.

combinatorial: This mode will yield good combinatorial chromatin state calls for any
number of marks and conditions. However, differences between conditions have more
false positives than in mode differential or full.

separate: Only replicates are processed in a multivariate manner. Combinatorial states
are constructed by a simple post-hoc combination of peak calls.

library(chromstaR)

#=== Step 1: Preparation ===
Prepare the file paths. Exchange this with your input and output directories

inputfolder <- system.file("extdata","euratrans", package="chromstaRData")
outputfolder <- file.path(tempdir(), 'SHR-BN-example')

Define experiment structure, put NA if you don't have controls
data(experiment_table)
print(experiment_table)

##
##
##
##
##
##
##
##
##
##
##
##
H##

file mark condition replicate pairedEndReads
1 1v-H3K27me3-BN-male-bio2-techl.bam H3K27me3 BN 1 FALSE
2 1lv-H3K27me3-BN-male-bio2-tech2.bam H3K27me3 BN 2 FALSE
3 lv-H3K27me3-SHR-male-bio2-techl.bam H3K27me3 SHR 1 FALSE
4 lv-H3K27me3-SHR-male-bio2-tech2.bam H3K27me3 SHR 2 FALSE
5 lv-H3K4me3-BN-female-biol-techl.bam H3K4me3 BN 1 FALSE
6 lv-H3K4me3-BN-male-bio2-techl.bam H3K4me3 BN 2 FALSE
7 1lv-H3K4me3-SHR-male-bio2-techl.bam H3K4me3 SHR 1 FALSE
8 1v-H3K4me3-SHR-male-bio3-techl.bam H3K4me3 SHR 2 FALSE
controlFiles
1 lv-input-BN-male-biol-techl.bam|lv-input-BN-male-biol-tech2.bam
2 lv-input-BN-male-biol-techl.bam|lv-input-BN-male-biol-tech2.bam
3 lv-input-SHR-male-biol-techl.bam

14

The chromstaR user’s guide

4 lv-input-SHR-male-biol-techl.bam
5 <NA>
6 <NA>
7 <NA>
8 <NA>

Define assembly

This is only necessary if you have BED files, BAM files are handled automatically.
For common assemblies you can also specify them as 'hgl9' for example.
data(rn4_chrominfo)

head(rn4_chrominfo)

chromosome length

1 chrM 16300
2 chrl2 46782294
3 chr20 55268282
4 chrl9 59218465
5 chrl8 87265094
6 chrll 87759784

#=== Step 2: Run Chromstar ===

Run ChromstaR

Chromstar(inputfolder, experiment.table=experiment_table,
outputfolder=outputfolder, numCPU=4, binsize=1000, stepsize=500,
assembly=rn4_chrominfo, prefit.on.chr='chrl2', chromosomes='chri2',
mode='differential')

Results are stored in 'outputfolder' and can be loaded for further processing
list.files(outputfolder)

[1] "BROWSERFILES" "PLOTS" "README. txt" "binned"
[5] "chrominfo.tsv" "chromstaR.config" "combined" "experiment_table.tsv"
[9] "multivariate" "univariate"

model <- get(load(file.path(outputfolder, 'combined',
'combined_mode-differential binsizel000_stepsize500.RData')))

I It is important that the distributions in folder outputfolder/PLOTS /univariate-distributions are fitted correctly !!
Please check section 7.4 for examples of how this plot should not look like and what can be done to get a correct fit.

#=== Step 3: Analysis and export ===

Obtain all genomic regions where the two tissues have different states

segments <- model$segments

diff.segments <- segments[segments$combination.SHR != segments$combination.BN]

Let's be strict with the differences and get only those where both marks are different

diff.segments <- diff.segments[diff.segments$differential.score >= 1.9]

exportGRangesAsBedFile(diff.segments, trackname='differential_chromatin_states',
filename=tempfile(), scorecol='differential.score')

Warning in exportGRangesAsBedFile(diff.segments, trackname = "differential_chromatin_states", : Column ’'differential.score’
should contain integer values between 0 and 1000 for compatibility with the UCSC convention.

Obtain all genomic regions where we find a bivalent promoter in BN but not in SHR
bivalent.BN <- segments[segments$combination.BN == '[H3K27me3+H3K4me3]' &

segments$combination.SHR != '[H3K27me3+H3K4me3] "]
Obtain all genomic regions where BN and SHR have promoter signatures
promoter.BN <- segments[segments$transition.group == 'constant [H3K4me3]']

Get transition frequencies
print(model$frequencies)

combination.BN combination.SHR domains frequency cumulative.frequency
1 [H3K27me3] [H3K27me3] 1326 4.367492e-01 0.4367492
2 [1 [] 1324 4.197982e-01 0.8565474
3 [H3K4me3] [H3K4me3] 849 8.564191e-02 0.9421893
4 [H3K27me3+H3K4me3] [H3K27me3+H3K4me3] 848 5.275533e-02 0.9949446
5 [H3K27me3] [] 19 1.934505e-03 0.9968791
6 [1 [H3K27me3] 17 1.752811e-03 0.9986320
7 [H3K27me3] [H3K27me3+H3K4me3] 16 4.702663e-04 0.9991022
8 [1 [H3K4me3] 12 2.992604e-04 0.9994015
9 [H3K27me3+H3K4me3] [H3K27me3] 5 2.030696e-04 0.9996045
10 [H3K4me3] [H3K27me3+H3K4me3] 5 1.603181e-04 0.9997649
11 [H3K4me3] [] 3 7.481510e-05 0.9998397
12 [H3K27me3+H3K4me3] [1 1 6.412723e-05 0.9999038
13 [1 [H3K27me3+H3K4me3] 1 6.412723e-05 0.9999679
14 [H3K27me3] [H3K4me3] 1 3.206361e-05 1.0000000
#i#t group

1 constant [H3K27me3]

The chromstaR user’s guide

2 zero transition
3 constant [H3K4me3]
4 constant [H3K27me3+H3K4me3]
5 stage-specific [H3K27me3]
6 stage-specific [H3K27me3]
7 other
8 stage-specific [H3K4me3]
9 other
10 other
11 stage-specific [H3K4me3]

12 stage-specific [H3K27me3+H3K4me3]
13 stage-specific [H3K27me3+H3K4me3]
14 other

=== Step 4: Enrichment analysis ===
Annotations can easily be obtained with the biomaRt package. Of course, you can
also load them from file if you already have annotation files available

library(biomaRt)
ensembl <- useEnsembl(biomart="'ENSEMBL_MART_ENSEMBL', dataset='rnorvegicus_gene_ensembl')
genes <- getBM(attributes=c('ensembl_gene_id', ‘'chromosome_name', 'start_position',

‘end_position', 'strand', 'external_gene_name',
'gene_biotype'),
mart=ensembl)
Transform to GRanges for easier handling
genes <- GRanges(seqnames=paste0('chr',genes$chromosome_name),
ranges=IRanges (start=genes$start, end=genes$end),
strand=genes$strand,
name=genes$external_gene_name, biotype=genes$gene_biotype)
Rename chrMT to chrM to avoid warnings
seqlevels(genes) [seqlevels(genes)=='chrMT'] <- ‘'chrM'
Select only chri2 to avoid warnings
genes <- keepSeqlevels(genes, 'chrl2', pruning.mode = 'coarse')
print(genes)

GRanges object with 918 ranges and 2 metadata columns:

segnames ranges strand | name biotype
<Rle> <IRanges> <Rle> | <character> <character>
[1] chrl2 32071693-32109938 + | Rilpll protein_coding
#it [2] chrl2 32110993-32122660 - Snrnp35 protein_coding
[3] chrl2 31296156-31362647 + | Scarbl protein_coding
[4] chrl2 33514230-33529931 + | Morn3 protein_coding
[5] chrl2 33534344-33548405 - Orail protein_coding
#i#

[914] chrl2 46454870-46500509 - Golga3 protein_coding
[915] chrl2 46504497-46538014 - Chfr protein_coding
[916] chrl2 46545073-46575828 - Zfp605 protein_coding
|
|

[917] chrl2 46574435-46578873 + Gtpbp6 protein_coding
[918] chrl2 46345420-46393939 - Pole protein_coding
£ cmcomos

seqinfo: 1 sequence from an unspecified genome; no seqlengths

We expect promoter [H3K4me3] and bivalent-promoter signatures [H3K4me3+H3K27me3]
to be enriched at transcription start sites.
plots <- plotEnrichment(hmm=model, annotation=genes, region='start')
plots[['BN']] + facet wrap(~ combination) +
ggtitle('Fold enrichment around TSS') +
xlab('distance from TSS')

Fold enrichment around TSS

[H3K27me3+H3K4me3] [H3K27me3]

0.24

0.0

-0.2 .
combination

=
S
2
[5]
g
B -0.44 = [H3K27me3+H3K4me3]
L
g [H3K4me3] i] [H3K27me3]
o} H3K4me3]
§ 021 —— TN L 1
o -]
k=)
LS Sl W, 200 O il ' A ¥ A B e e

-0.24

-0.44

T T T T — Lt T T T T
-10000 -5000 0 5000 1000610000 -5000 0 5000 10000

distance from TSS

16

The chromstaR user’s guide

plots <- plotEnrichment(hmm=model, annotation=genes, region='start', what='peaks"')
plots[['BN']] + facet wrap(~ mark) +
ggtitle('Fold enrichment around TSS') +
xlab('distance from TSS')
Fold enrichment around TSS
H3K27me3 H3K4me3
0.14

=)

Q

g

L e e e
x

9

®

2

]

2 -0.1-

e

j=2]

o

oo W\’_
~10000 5000 0 5000 10000-10000 5000 0 5000 10000

distance from TSS

Fold enrichment with different biotypes, showing that protein coding genes are
enriched with (bivalent) promoter combinations [H3K4me3] and [H3K4me3+H3K27me3],

while rRNA is enriched with the empty [] combination.
tss <- resize(genes, width = 3, fix = 'start')
biotypes <- split(tss, tss$biotype)
plots <- plotFoldEnrichHeatmap(model, annotations=biotypes)
plots[['BN']] + coord flip() +
ggtitle('Fold enrichment with different biotypes')

Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):

Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):

Fold enrichment with different biotypes

-

[H3K4me3] -

combination

[H3K27me3] -

[H3K27me3+H3K4me3] -

" " " " " " v
< < < @ o o o
E : 2 &3 & B £
S = | g 8 g N
£ 5 Q 3 S 3 8
2 E] c E] 2
E 2 5] ?
8 5 a
< &
2
2
2
[
8
<4
5
annotation

6 Output of function Chromstar()

mark
== H3K27me3
H3K4me3

collapsing to unique ’'x’ values

collapsing to unique ’'x’ values

collapsing to unique ’'x’ values

scaRNA -
SNRNA -
SNORNA -

log(observed/expected)

Chromstar() is the workhorse of the chromstaR package and produces all the files that are
necessary for downstream analyses. Here is an explanation of the files and folders you will

find in your outputfolder:

= chrominfo.tsv:
A tab-separated file with chromosome lengths.

= chromstaR.config:

A text file with all the parameters that were used to run function Chromstar().

17

The chromstaR user’s guide

= experiment_table.tsv:
A tab-separated file of your experiment setup.

= binned:
RData files with the results of the binnig step. Contains GRanges objects with binned
genomic coordinates and read counts.

= BROWSERFILES:
Bed files for upload to the UCSC genome browser. It contains files with combinatorial
states (“_combinations.bed.gz"”) and underlying peak calls (“_peaks.bed.gz"). !Al-
ways check the “_peaks.bed.gz” files if you are satisfied with the peak calls. If not,
there are ways to make the calls stricter (see section 7.1).

= —combined¢:
RData files with the combined results of the uni- and multivariate peak calling steps.
This is what you want to use for downstream analyses. Contains combinedMultiHMM
objects.

= combined_mode-separate.RData: Simple combination of peak calls (replicates
considered) without multivariate analysis.

= combined_mode-combinatorial. RData: Combination of multivariate results for
mode="combinatorial’.

= combined_mode-differential. RData: Combination of multivariate results for mode="differential’.
= combined_mode-full. RData: Combination of multivariate results for mode="full".

= multivariate:
RData files with the results of the multivariate peak calling step. Contains multiHMM
objects.

= PLOTS:
Several plots that are produced by default. Please check the plots in subfolder univariate-
distributions for irregularities (see section 4).

= replicates:
RData files with the result of the replicate peak calling step. Contains multiHMM
objects.

= univariate:
RData files with the result of the univariate peak calling step. Contains uniHMM
objects.

7 FAQ

7.1 The peak calls are too lenient. Can | adjust the strictness of
the peak calling?

The strictness of the peak calling can be controlled with a cutoff on the posterior probability.
The Hidden Markov Model gives posterior probabilities for each peak, and based on these
probabilites the model decides if a peak is present or not by picking the state with the highest
probability. This way of peak calling leads to very lenient peak calls, and for some applications
it may be desirable to obtain only very clear peaks. This can be achieved by using change
PostCutoff and changeMaxPostCutoff. changePostCutoff applies a cutoff on the posteriors
in each bin, which will make peaks narrower but might also lead to fragmented peaks in the

The chromstaR user’s guide

case of broad peaks. changeMaxPostCutoff applies a cutoff on the maximum posterior within
each peak, which will preserve broad peaks. To follow the below example, please first run

step 1 and 2 from section 5.4.

model <- get(load(file.path(outputfolder, ‘combined',
'combined_mode-differential binsizel000_stepsize500.RData')))

Try a strict cutoff close to 1

model2 <- changeMaxPostCutoff(model, maxPost.cutoff=0.99999)

model3 <- changePostCutoff(model, post.cutoff=0.99999)

Check the peaks before and after adjustment

plots <- plotGenomeBrowser(model, chr='chrl2', start=1, end=3e5)

plots2 <- plotGenomeBrowser(model2, chr='chrl2', start=1, end=3e5)

plots3 <- plotGenomeBrowser(model3, chr='chrl2', start=1, end=3e5)

plots$ H3K27me3-BN-repl™ + ggtitle('H3K27me3 original')

H3K27me3 original

RPKM

06400
position

plots2$~H3K27me3-BN-repl” + ggtitle('H3K27me3 maxPost.cutoff=0.99999"')

H3K27me3 maxPost.cutoff=0.99999
147-

o- | AMLJ.A“‘“dlﬁklhuﬁAAlmﬂnhhdlhm.ul“kh“ﬂAu‘hﬂ‘“‘lmJ‘ al
1 I I I S N

0e+00 1le+05 2e+05 3e+05
position

RPKM

plots3$ H3K27me3-BN-repl™ + ggtitle('H3K27me3 post.cutoff=0.99999"')

H3K27me3 post.cutoff=0.99999
147-

0e+00 1e+05 2e+05 3e+05
position

RPKM

plots$ H3K4me3-BN-repl™ + ggtitle('H3K4me3 original')

L

o- S .
m nii | 1
0et00 1et05 2et05 3e405
position

H3K4me3 original
853-

RPKM

[

plots2$~H3K4me3-BN-repl” + ggtitle('H3K4me3 maxPost.cutoff=0.99999")

H3K4me3 maxPost.cutoff=0.99999
853~

RPKM
.
-
—
—

0e+00 1le+05 2e+05 3e+05
position

plots3$~H3K4me3-BN-repl™ + ggtitle('H3K4me3 post.cutoff=0.99999"')

H3K4me3 post.cutoff=0.99999
853~

RPKM

0e+00 1e+05 2e+05 3e+05
position

It is even possible to adjust the sensitivity differently for the different marks or conditions.
Set a stricter cutoff for H3K4me3 than for H3K27me3

cutoffs <- c(0.9, 0.9, 0.9, 0.9, 0.99, 0.99, 0.99, 0.99)

names (cutoffs) <- model$info$ID

print(cutoffs)

H3K27me3-BN-repl H3K27me3-BN-rep2 H3K4me3-BN-repl H3K4me3-BN-rep2 H3K27me3-SHR-repl H3K27me3-SHR-rep2

19

The chromstaR user’s guide

0.90 0.90 0.90 0.90 0.99 0.99
H3K4me3-SHR-repl H3K4me3-SHR-rep2
#it 0.99 0.99

model2 <- changeMaxPostCutoff(model, maxPost.cutoff=cutoffs)

7.2 The combinatorial differences that chromstaR gives me are
not convincing. Is there a way to restrict the results to a more
convincing set?

You were interested in combinatorial state differences as in section 5.4 and checked the results
in a genome browser. You found that some differences are convincing by eye and some are
not. There are several possibilities to explore:

1. Run Chromstar in mode="differential’ (instead of mode='combinatorial’) and see if the
results improve.

2. You can play with the “differential.score” (see section 5.4, step 3) and export only
differences with a high score. A differential score close to 1 means that one modification
is different, a score close to 2 means that two modifications are different etc. The score
is calculated as the sum of differences in posterior probabilities between marks.

3. Use changePostCutoff or changeMaxPostCutoff to obtain only high confidence peaks.

4. Check for bad replicates that are very different from the rest and exclude them prior to
the analysis.

7.3 How do | plot a simple heatmap with the combinations?

heatmapCombinations (marks=c('H3K4me3', 'H3K27me3', 'H3K36me3', 'H3K27Ac'))

Warning: The ‘guide’ argument in ‘scale_x()‘ cannot be ‘FALSE‘. This was deprecated in ggplot2 3.3.4.
1 Please use "none" instead.

1 The deprecated feature was likely used in the chromstaR package.

Please report the issue at <https://github.com/ataudt/chromstaR/issues>.

This warning is displayed once every 8 hours.

Call ‘lifecycle::last_lifecycle_warnings()‘ to see where this warning was generated.

H3K27Ac

H3K36me3

mark

H3K27me3

H3K4me3

4$> «§> «§> & 65} «V} & «§> «§> «§> @£§ <£§ «$> & & ©
UL N 4 S N\ g S L i 4 < SN S o
L FFLTFL LI FFLEFE
X X X X X X 2 NS
A o3 X g SO o3 o3 XX 9 X N
& & I S & S & & & I I & o
AS & & & N AS & & & & &
N N & T Y S NG
& & N CFFFELTP
g < g & £ v &
N AT @ o
g & 0 o
& N OV Y
] o)
&
&
2
Ny
combination

20

The chromstaR user’s guide

7.4 Examples of problematic distributions.

For the chromstaR peak calling to work correctly it is essential that the Baum-Welch algo-
rithm correctly identifies unmodified (background) and modified (signal/peak) components
in the data. Therefore, you should always check the plots in folder PLOTS /univariate-
distributions for correct convergence. Here are some plots that indicate failed and succesful

fitting procedures:

a

0.020

0015

density

0,010

0.000

0 100
read count

components
— unmodfied, mean=136 56, var=1876.47, weight=0.75

— modif

1=67.46, var=2529.8, weight=0.25
— total, mean(data)=113.05, var(data)=3466.91

200 360

0.020

density

0010

0.005

0.000

read count

components
— unmodfied, mean=71.23, var=3221.61, weight=0.28

— modiied, m

=134.18, var=1789.86, weight=0.72
— total, mean(data)=113.05, var(data)=3466.91

200 300

The plot shows data for H3K27me3 at binsize 1000bp. (a) Incorrectly converged fit, where the
modified component (red) has lower read counts than the unmodified component (gray).
(b) Correctly converged fit. Even here, the fit could be improved by reducing the average
number of reads per bin, either by selecting a smaller binsize or by downsampling the data

before using chromstaR.

a

density

components

density

components

read count

The plot shows data for H3K27me3 at binsize

1o
read count

150bp. (a) Incorrectly converged fit, where

the modified component (red) has a higher density at zero reads than the unmodified
component (gray). (b) Correctly converged fit.

8 Session Info

toLatex(sessionInfo())

= R Under development (unstable) (2024-10-26 r87273 ucrt), x86_64-w64-mingw32

= Locale: LC_COLLATE=C, LC_CTYPE=English_United States.utf8, LC_MONETARY=English_United States.utf8,
LC_NUMERIC=C, LC_TIME=English_United States.utf8

= Time zone: America/New_York

= TZcode source: internal

= Running under: Windows Server 2022 x64 (build 20348)

= Matrix products: default

21

The chromstaR user’s guide

= Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

= Other packages: BiocGenerics 0.53.3, GenomelnfoDb 1.43.2, GenomicRanges 1.59.1, IRanges 2.41.2,
S4Vectors 0.45.2, biomaRt 2.63.0, chromstaR 1.33.1, chromstaRData 1.33.0, generics 0.1.3, ggplot2 3.5.1

= Loaded via a namespace (and not attached): AnnotationDbi 1.69.0, Biobase 2.67.0, BiocFileCache 2.15.0,
BiocManager 1.30.25, BiocParallel 1.41.0, BiocStyle 2.35.0, Biostrings 2.75.3, DBI 1.2.3, DelayedArray 0.33.3,
GenomelnfoDbData 1.2.13, GenomicAlignments 1.43.0, KEGGREST 1.47.0, Matrix 1.7-1, MatrixGenerics 1.19.0,
R6 2.5.1, RSQLite 2.3.9, Repp 1.0.13-1, Rsamtools 2.23.1, S4Arrays 1.7.1, SparseArray 1.7.2,
SummarizedExperiment 1.37.0, UCSC.utils 1.3.0, XVector 0.47.0, abind 1.4-8, bamsignals 1.39.0, bit 4.5.0.1,
bit64 4.5.2, bitops 1.0-9, blob 1.2.4, cachem 1.1.0, cli 3.6.3, codetools 0.2-20, colorspace 2.1-1, compiler 4.5.0,
crayon 1.5.3, curl 6.0.1, dbplyr 2.5.0, digest 0.6.37, doParallel 1.0.17, dplyr 1.1.4, evaluate 1.0.1, farver 2.1.2,
fastmap 1.2.0, filelock 1.0.3, foreach 1.5.2, glue 1.8.0, grid 4.5.0, gtable 0.3.6, highr 0.11, hms 1.1.3,
htmltools 0.5.8.1, httr 1.4.7, httr2 1.0.7, iterators 1.0.14, jsonlite 1.8.9, knitr 1.49, labeling 0.4.3, lattice 0.22-6,
lifecycle 1.0.4, magrittr 2.0.3, matrixStats 1.4.1, memoise 2.0.1, munsell 0.5.1, mvtnorm 1.3-2, parallel 4.5.0,
pillar 1.10.0, pkgconfig 2.0.3, plyr 1.8.9, png 0.1-8, prettyunits 1.2.0, progress 1.2.3, purrr 1.0.2, ragg 1.3.3,
rappdirs 0.3.3, reshape2 1.4.4, rlang 1.1.4, rmarkdown 2.29, scales 1.3.0, stringi 1.8.4, stringr 1.5.1,

systemfonts 1.1.0, textshaping 0.4.1, tibble 3.2.1, tidyselect 1.2.1, tinytex 0.54, tools 4.5.0, vctrs 0.6.5, withr 3.0.2,

xfun 0.49, xml2 1.3.6, yaml 2.3.10, zlibbioc 1.53.0

References

[1]

2]

Aaron Taudt, Minh Anh Nguyen, Matthias Heinig, Frank Johannes, and Maria
Colome-Tatche. chromstaR: Tracking combinatorial chromatin state dynamics in space
and time. Technical report, feb 2016. URL:
http://biorxiv.org/content/early/2016,/02/04,/038612.abstract, doi:10.1101/038612.

Courtney W. Hanna, Aaron Taudt, Jiahao Huang, Lenka Gahurova, Andrea Kranz,
Simon Andrews, Wendy Dean, A. Francis Stewart, Maria Colomé-Tatché, and Gavin
Kelsey. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes.
Nature Structural & Molecular Biology, page 1, jan 2018. URL:
http://www.nature.com/articles/s41594-017-0013-5,
d0i:10.1038/541594-017-0013-5.

22

http://biorxiv.org/content/early/2016/02/04/038612.abstract
http://dx.doi.org/10.1101/038612
http://www.nature.com/articles/s41594-017-0013-5
http://dx.doi.org/10.1038/s41594-017-0013-5

	1 Introduction
	2 Citation
	3 Outline of workflow
	4 Univariate analysis
	4.1 Task 1: Peak calling for a narrow histone modification
	4.2 Task 2: Peak calling for a broad histone modification
	4.3 Task 3: Peak calling for ATAC-seq, DNase-seq, FAIRE-seq, ...

	5 Multivariate analysis
	5.1 Task 1: Integrating multiple replicates
	5.2 Task 2: Detecting differentially modified regions
	5.3 Task 3: Finding combinatorial chromatin states
	5.4 Task 4: Finding differences between combinatorial chromatin states

	6 Output of function [functioncolor]Chromstar()
	7 FAQ
	7.1 The peak calls are too lenient. Can I adjust the strictness of the peak calling?
	7.2 The combinatorial differences that chromstaR gives me are not convincing. Is there a way to restrict the results to a more convincing set?
	7.3 How do I plot a simple heatmap with the combinations?
	7.4 Examples of problematic distributions.

	8 Session Info

