K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 699 446 672 713 378 103 990 215 478 855 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  699  267  343  825  377  520  425  903  907   700
##  [2,]  446  669  607  648  113  272  643  368  495   296
##  [3,]  672  766  818  331  408  145  638  553  801   310
##  [4,]  713  631   47  768  819  194  851  920  193   998
##  [5,]  378   74  392  558  449  465  924  472  105   911
##  [6,]  103  840  956  522   99   27  520  639  871   489
##  [7,]  990  851    4  672   47   65  193  128  983   713
##  [8,]  215  635  247  699  471  827  545  161  442   795
##  [9,]  478   18  682  532  378   34  558  538  858   392
## [10,]  855  920  212  970  779  819  224  430  752   625
## [11,]  403  782  856  371  998  749  711  819   14   523
## [12,]  940  852  525  107  982  248  989  393   29   119
## [13,]  520  669  566  218  387  138  550  261    1   871
## [14,]  933  403   11  998  856  874  596  782  224   445
## [15,]  840  176  524  284  903  570  794  272  306   949
## [16,]  519  402   61  558  503  158  123  465  378   688
## [17,]   76  746  881  803  642  222   90  282  609   268
## [18,]    9  621  459  778  915   34  963  558  538   549
## [19,]  436  911  778  627   34  158  859  605  858   519
## [20,]  274  583  302  417  584  190  974  537  722    71
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 2.84 4.48 2.95 2.72 3.73 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 2.839818 3.019769 3.061995 3.123004 3.185397 3.211395 3.211940 3.237000
##  [2,] 4.477855 4.512164 4.550462 4.550679 4.565812 4.681746 4.719068 4.735083
##  [3,] 2.951628 3.037363 3.048558 3.241036 3.260322 3.343378 3.354560 3.406365
##  [4,] 2.722951 2.842039 2.874365 2.967493 2.992920 3.017727 3.078796 3.096412
##  [5,] 3.732413 4.764091 4.930693 4.975502 4.982312 5.093407 5.219101 5.220080
##  [6,] 3.529149 3.603576 3.658713 3.682184 3.731102 3.743560 3.837096 3.846615
##  [7,] 3.195627 3.244952 3.269440 3.275306 3.341227 3.402837 3.474173 3.489659
##  [8,] 2.399169 3.165788 3.324877 3.524343 3.536828 3.561370 3.664144 3.676124
##  [9,] 3.215614 3.576371 3.774560 4.396100 4.409877 4.620142 4.668892 4.681892
## [10,] 2.954565 2.988297 3.020797 3.049526 3.089964 3.141279 3.306521 3.339356
## [11,] 2.397645 2.798396 2.950448 2.965590 3.009530 3.109029 3.238542 3.280094
## [12,] 4.119439 4.215966 4.224265 4.656054 4.663500 4.746444 4.781532 4.858040
## [13,] 3.711839 3.907756 3.964631 4.022863 4.027375 4.065656 4.093712 4.106356
## [14,] 2.971382 3.084338 3.301510 3.374281 3.427643 3.489395 3.521066 3.635662
## [15,] 2.461213 3.137766 3.220843 3.308511 3.336355 3.368790 3.409879 3.417319
## [16,] 3.923602 4.001273 4.373896 4.439934 4.501913 4.516977 4.593997 4.647018
## [17,] 3.149285 3.595509 3.990705 4.113093 4.118880 4.119479 4.154497 4.197147
## [18,] 3.576371 4.386751 4.993707 5.199900 5.219471 5.268104 5.365884 5.517923
## [19,] 4.474719 4.529364 4.718148 4.788508 4.810910 4.872632 4.885538 4.913037
## [20,] 3.381325 4.287278 4.289126 4.460192 4.480005 4.605682 4.669324 4.676081
##           [,9]    [,10]
##  [1,] 3.350592 3.358886
##  [2,] 4.736092 4.778492
##  [3,] 3.416937 3.443737
##  [4,] 3.153086 3.170707
##  [5,] 5.315915 5.322156
##  [6,] 3.853468 3.882920
##  [7,] 3.500995 3.553795
##  [8,] 3.699885 3.792353
##  [9,] 4.767480 4.769514
## [10,] 3.407447 3.408916
## [11,] 3.301510 3.323589
## [12,] 4.893656 4.922133
## [13,] 4.114466 4.145067
## [14,] 3.717587 3.757225
## [15,] 3.417989 3.440920
## [16,] 4.678632 4.730774
## [17,] 4.243374 4.262171
## [18,] 5.524044 5.525519
## [19,] 4.945290 4.949405
## [20,] 4.707251 4.728339

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       0.991                      1                      0.966
##  2                       0.991                      1                      0.919
##  3                       0.991                      1                      0.698
##  4                       0.991                      1                      1    
##  5                       0.991                      0.984                  0.919
##  6                       0.991                      0.997                  0.919
##  7                       0.993                      0.997                  0.981
##  8                       0.993                      0.878                  1    
##  9                       0.991                      0.720                  0.919
## 10                       0.991                      0.997                  0.860
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1        -0.352         -0.137         -0.458                    -0.859
##  2        -0.0179        -0.0305        -0.663                    -0.897
##  3        -0.255          0.179         -0.241                    -1.58 
##  4        -0.0695        -0.197         -0.213                     0.774
##  5         0.539         -0.240         -0.312                     0.132
##  6        -0.0160        -0.136         -0.204                    -0.392
##  7        -0.275         -0.295         -0.633                     0.187
##  8        -0.180         -0.255         -0.0147                   -0.455
##  9        -0.409         -0.277         -0.137                    -1.11 
## 10        -0.704         -0.358         -0.886                     0.254
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.293 0.207 0.282 0.31 0.187 ...