Contents

0.1 Instalation

if (!require("BiocManager")) {
    install.packages("BiocManager")
}
BiocManager::install("glmSparseNet")

1 Required Packages

library(futile.logger)
library(ggplot2)
library(glmSparseNet)
library(survival)

# Some general options for futile.logger the debugging package
flog.layout(layout.format("[~l] ~m"))
options("glmSparseNet.show_message" = FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())

1.1 Prepare data

data("cancer", package = "survival")
xdata <- survival::ovarian[, c("age", "resid.ds")]
ydata <- data.frame(
    time = survival::ovarian$futime,
    status = survival::ovarian$fustat
)

1.2 Separate using age as co-variate

(group cutoff is median calculated relative risk)

resAge <- separate2GroupsCox(c(age = 1, 0), xdata, ydata)

1.2.1 Kaplan-Meier survival results

## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
## 
##                n events median 0.95LCL 0.95UCL
## Low risk - 1  13      4     NA     638      NA
## High risk - 1 13      8    464     268      NA

1.2.2 Plot

A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below or equal the median risk.

The opposite for the high-risk groups, populated with individuals above the median relative-risk.

1.3 Separate using age as co-variate (group cutoff is 40% - 60%)

resAge4060 <-
    separate2GroupsCox(c(age = 1, 0),
        xdata,
        ydata,
        probs = c(.4, .6)
    )

1.3.1 Kaplan-Meier survival results

## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
## 
##                n events median 0.95LCL 0.95UCL
## Low risk - 1  11      3     NA     563      NA
## High risk - 1 10      7    359     156      NA

1.3.2 Plot

A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.

The opposite for the high-risk groups, populated with individuals above the median relative-risk.

1.4 Separate using age as co-variate (group cutoff is 60% - 40%)

This is a special case where you want to use a cutoff that includes some sample on both high and low risks groups.

resAge6040 <- separate2GroupsCox(
    chosenBetas = c(age = 1, 0),
    xdata,
    ydata,
    probs = c(.6, .4),
    stopWhenOverlap = FALSE
)
## Warning in buildPrognosticIndexDataFrame(ydata, probs, stopWhenOverlap, : The cutoff values given to the function allow for some over samples in both groups, with:
##   high risk size (15) + low risk size (16) not equal to xdata/ydata rows (31 != 26)
## 
## We are continuing with execution as parameter `stopWhenOverlap` is FALSE.
##   note: This adds duplicate samples to ydata and xdata xdata

1.4.1 Kaplan-Meier survival results

## Kaplan-Meier results
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognosticIndexDf)
## 
##                n events median 0.95LCL 0.95UCL
## Low risk - 1  16      5     NA     638      NA
## High risk - 1 15      9    475     353      NA

1.4.2 Plot

A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.

The opposite for the high-risk groups, populated with individuals above the median relative-risk.

2 Session Info

sessionInfo()
## R version 4.5.0 beta (2025-04-02 r88102)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
##  [1] grid      parallel  stats4    stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] glmnet_4.1-8                VennDiagram_1.7.3          
##  [3] reshape2_1.4.4              forcats_1.0.0              
##  [5] Matrix_1.7-3                glmSparseNet_1.27.0        
##  [7] TCGAutils_1.29.0            curatedTCGAData_1.29.2     
##  [9] MultiAssayExperiment_1.35.0 SummarizedExperiment_1.39.0
## [11] Biobase_2.69.0              GenomicRanges_1.61.0       
## [13] GenomeInfoDb_1.45.0         IRanges_2.43.0             
## [15] S4Vectors_0.47.0            BiocGenerics_0.55.0        
## [17] generics_0.1.3              MatrixGenerics_1.21.0      
## [19] matrixStats_1.5.0           futile.logger_1.4.3        
## [21] survival_3.8-3              ggplot2_3.5.2              
## [23] dplyr_1.1.4                 BiocStyle_2.37.0           
## 
## loaded via a namespace (and not attached):
##   [1] jsonlite_2.0.0            shape_1.4.6.1            
##   [3] magrittr_2.0.3            magick_2.8.6             
##   [5] GenomicFeatures_1.61.0    farver_2.1.2             
##   [7] rmarkdown_2.29            BiocIO_1.19.0            
##   [9] vctrs_0.6.5               memoise_2.0.1            
##  [11] Rsamtools_2.25.0          RCurl_1.98-1.17          
##  [13] rstatix_0.7.2             tinytex_0.57             
##  [15] htmltools_0.5.8.1         S4Arrays_1.9.0           
##  [17] BiocBaseUtils_1.11.0      progress_1.2.3           
##  [19] AnnotationHub_3.17.0      lambda.r_1.2.4           
##  [21] curl_6.2.2                broom_1.0.8              
##  [23] Formula_1.2-5             pROC_1.18.5              
##  [25] SparseArray_1.9.0         sass_0.4.10              
##  [27] bslib_0.9.0               plyr_1.8.9               
##  [29] httr2_1.1.2               zoo_1.8-14               
##  [31] futile.options_1.0.1      cachem_1.1.0             
##  [33] GenomicAlignments_1.45.0  mime_0.13                
##  [35] lifecycle_1.0.4           iterators_1.0.14         
##  [37] pkgconfig_2.0.3           R6_2.6.1                 
##  [39] fastmap_1.2.0             GenomeInfoDbData_1.2.14  
##  [41] digest_0.6.37             colorspace_2.1-1         
##  [43] AnnotationDbi_1.71.0      ps_1.9.1                 
##  [45] ExperimentHub_2.17.0      RSQLite_2.3.9            
##  [47] ggpubr_0.6.0              labeling_0.4.3           
##  [49] filelock_1.0.3            km.ci_0.5-6              
##  [51] httr_1.4.7                abind_1.4-8              
##  [53] compiler_4.5.0            bit64_4.6.0-1            
##  [55] withr_3.0.2               backports_1.5.0          
##  [57] BiocParallel_1.43.0       carData_3.0-5            
##  [59] DBI_1.2.3                 ggsignif_0.6.4           
##  [61] biomaRt_2.65.0            rappdirs_0.3.3           
##  [63] DelayedArray_0.35.0       rjson_0.2.23             
##  [65] tools_4.5.0               chromote_0.5.0           
##  [67] glue_1.8.0                restfulr_0.0.15          
##  [69] promises_1.3.2            checkmate_2.3.2          
##  [71] gtable_0.3.6              KMsurv_0.1-5             
##  [73] tzdb_0.5.0                tidyr_1.3.1              
##  [75] survminer_0.5.0           websocket_1.4.4          
##  [77] data.table_1.17.0         hms_1.1.3                
##  [79] car_3.1-3                 xml2_1.3.8               
##  [81] XVector_0.49.0            BiocVersion_3.22.0       
##  [83] foreach_1.5.2             pillar_1.10.2            
##  [85] stringr_1.5.1             later_1.4.2              
##  [87] splines_4.5.0             BiocFileCache_2.17.0     
##  [89] lattice_0.22-7            rtracklayer_1.69.0       
##  [91] bit_4.6.0                 tidyselect_1.2.1         
##  [93] Biostrings_2.77.0         knitr_1.50               
##  [95] gridExtra_2.3             bookdown_0.43            
##  [97] xfun_0.52                 stringi_1.8.7            
##  [99] UCSC.utils_1.5.0          yaml_2.3.10              
## [101] evaluate_1.0.3            codetools_0.2-20         
## [103] tibble_3.2.1              BiocManager_1.30.25      
## [105] cli_3.6.4                 xtable_1.8-4             
## [107] munsell_0.5.1             processx_3.8.6           
## [109] jquerylib_0.1.4           survMisc_0.5.6           
## [111] Rcpp_1.0.14               GenomicDataCommons_1.33.0
## [113] dbplyr_2.5.0              png_0.1-8                
## [115] XML_3.99-0.18             readr_2.1.5              
## [117] blob_1.2.4                prettyunits_1.2.0        
## [119] bitops_1.0-9              scales_1.3.0             
## [121] purrr_1.0.4               crayon_1.5.3             
## [123] rlang_1.1.6               KEGGREST_1.49.0          
## [125] rvest_1.0.4               formatR_1.14