| vsclust-package | VSClust provides a powerful method to run variance-sensitive clustering | 
| artificial_clusters | Synthetic/artificial data comprising 5 clusters | 
| averageCond | Calculate mean over replicates | 
| calcBHI | Calculate "biological homogeneity index" | 
| ClustComp | Function to run clustering with automatic fuzzifier settings (might become obsolete) | 
| cvalidate.xiebeni | Xie Beni Index of clustering object | 
| determine_fuzz | Determine individual fuzzifier values | 
| enrichSTRING_API | Enrichment Analysis via STRING REST API | 
| estimClust.plot | Plotting results from estimating the cluster number | 
| estimClustNum | Wrapper for estimation of cluster number | 
| mfuzz.plot | Plotting vsclust results | 
| optimalClustNum | Determine optimal cluster number from validity index | 
| pcaWithVar | Visualize using principal component analysis (both loadings and scoring) including the variance from the replicates | 
| PrepareForVSClust | Functions for running VSClust analysis | 
| PrepareSEForVSClust | Wrapper for statistical analysis for SummarizedExperiment object | 
| protein_expressions | Data from a typical proteomics experiment | 
| runClustWrapper | Wrapper for running cluster analysis | 
| runFuncEnrich | Functional Enrichment with STRING | 
| runVSClustApp | Run VSClust as Shiny app | 
| SignAnalysis | Unpaired statistical testing | 
| SignAnalysisPaired | Paired statistical testing | 
| SwitchOrder | arrange cluster member numbers from largest to smallest | 
| vsclust | VSClust provides a powerful method to run variance-sensitive clustering | 
| vsclust_algorithm | Run the vsclust clustering algorithm |