1 Installation from Bioconductor

crisprScoreData can be installed from the Bioconductor devel branch using the following commands in a fresh R session:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install(version="devel")
BiocManager::install("crisprScoreData")

2 Exploring the different data in crisprScoreData

We first load the crisprScoreData package:

library(crisprScoreData)
## Loading required package: ExperimentHub
## Loading required package: BiocGenerics
## Loading required package: generics
## 
## Attaching package: 'generics'
## The following objects are masked from 'package:base':
## 
##     as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
##     setequal, union
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
##     as.data.frame, basename, cbind, colnames, dirname, do.call,
##     duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
##     mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
##     rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
##     unsplit, which.max, which.min
## Loading required package: AnnotationHub
## Loading required package: BiocFileCache
## Loading required package: dbplyr

This package contains several pre-trained models for different on-target activity prediction algorithms to be used in the package crisprScore.

We can access the file paths of the different pre-trained models directly with named functions:

# For DeepHF model:
DeepWt.hdf5()
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                       EH6123 
## "/home/biocbuild/.cache/R/ExperimentHub/25c9c4579dc56e_6166"
DeepWt_T7.hdf5()
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                      EH6124 
## "/home/biocbuild/.cache/R/ExperimentHub/25c9c46cf709d_6167"
DeepWt_U6.hdf5()
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                       EH6125 
## "/home/biocbuild/.cache/R/ExperimentHub/25c9c427cd4703_6168"
esp_rnn_model.hdf5()
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                       EH6126 
## "/home/biocbuild/.cache/R/ExperimentHub/25c9c43c838fb4_6169"
hf_rnn_model.hdf5()
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                       EH6127 
## "/home/biocbuild/.cache/R/ExperimentHub/25c9c461a9ae15_6170"
# For Lindel model:
Model_weights.pkl()
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                       EH6128 
## "/home/biocbuild/.cache/R/ExperimentHub/25c9c45c41d935_6171"

Or we can access them using the ExperimentHub interface:

eh <- ExperimentHub()
query(eh, "crisprScoreData")
## ExperimentHub with 9 records
## # snapshotDate(): 2025-04-11
## # $dataprovider: Fudan University, UCSF, University of Washington, New York ...
## # $species: NA
## # $rdataclass: character
## # additional mcols(): taxonomyid, genome, description,
## #   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
## #   rdatapath, sourceurl, sourcetype 
## # retrieve records with, e.g., 'object[["EH6123"]]' 
## 
##            title             
##   EH6123 | DeepWt.hdf5       
##   EH6124 | DeepWt_T7.hdf5    
##   EH6125 | DeepWt_U6.hdf5    
##   EH6126 | esp_rnn_model.hdf5
##   EH6127 | hf_rnn_model.hdf5 
##   EH6128 | Model_weights.pkl 
##   EH7304 | CRISPRa_model.pkl 
##   EH7305 | CRISPRi_model.pkl 
##   EH7356 | RFcombined.rds
eh[["EH6127"]]
## see ?crisprScoreData and browseVignettes('crisprScoreData') for documentation
## loading from cache
##                                                       EH6127 
## "/home/biocbuild/.cache/R/ExperimentHub/25c9c461a9ae15_6170"

For details on the source of these files, and on their construction see ?crisprScoreData and the scripts:

  • inst/scripts/make-metadata.R
  • inst/scripts/make-data.Rmd
sessionInfo()
## R version 4.5.0 RC (2025-04-04 r88126)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] crisprScoreData_1.12.0 ExperimentHub_2.16.0   AnnotationHub_3.16.0  
## [4] BiocFileCache_2.16.0   dbplyr_2.5.0           BiocGenerics_0.54.0   
## [7] generics_0.1.3         BiocStyle_2.36.0      
## 
## loaded via a namespace (and not attached):
##  [1] rappdirs_0.3.3          sass_0.4.10             BiocVersion_3.21.1     
##  [4] RSQLite_2.3.9           digest_0.6.37           magrittr_2.0.3         
##  [7] evaluate_1.0.3          bookdown_0.43           fastmap_1.2.0          
## [10] blob_1.2.4              jsonlite_2.0.0          AnnotationDbi_1.70.0   
## [13] GenomeInfoDb_1.44.0     DBI_1.2.3               BiocManager_1.30.25    
## [16] httr_1.4.7              purrr_1.0.4             UCSC.utils_1.4.0       
## [19] Biostrings_2.76.0       jquerylib_0.1.4         cli_3.6.4              
## [22] crayon_1.5.3            rlang_1.1.6             XVector_0.48.0         
## [25] Biobase_2.68.0          bit64_4.6.0-1           withr_3.0.2            
## [28] cachem_1.1.0            yaml_2.3.10             tools_4.5.0            
## [31] memoise_2.0.1           dplyr_1.1.4             GenomeInfoDbData_1.2.14
## [34] filelock_1.0.3          curl_6.2.2              mime_0.13              
## [37] vctrs_0.6.5             R6_2.6.1                png_0.1-8              
## [40] stats4_4.5.0            lifecycle_1.0.4         KEGGREST_1.48.0        
## [43] S4Vectors_0.46.0        IRanges_2.42.0          bit_4.6.0              
## [46] pkgconfig_2.0.3         pillar_1.10.2           bslib_0.9.0            
## [49] glue_1.8.0              xfun_0.52               tibble_3.2.1           
## [52] tidyselect_1.2.1        knitr_1.50              htmltools_0.5.8.1      
## [55] rmarkdown_2.29          compiler_4.5.0