The HiBED package contains reference libraries derived from Illumina HumanMethylation450K and Illumina HumanMethylationEPIC DNA methylation microarrays (Zhang Z, Salas LA et al. 2023), consisting of 6 astrocyte, 12 endothelial, 5 GABAergic neuron, 5 glutamatergic neuron, 18 microglial, 20 oligodendrocyte, and 5 stromal samples from public resources.
The reference libraries were used to estimate proportions of 7 major brain cell types in 450K and EPIC bulk brain samples using a modified version of the algorithm constrained projection/quadratic programming described in Houseman et al. 2012.
Loading package:
Objects included:
1. HiBED_Libraries contains 4 libraries for deconvolution
We offer the function HiBED_deconvolution to estimate proportions for 7 major brain cell types, including GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. The estimates are calculated using modified CP/QP method described in Houseman et al. 2012.
see ?HiBED_deconvolution for details
# Step 1 load and process example
library(FlowSorted.Blood.EPIC)
library(FlowSorted.DLPFC.450k)
library(minfi)
Mset<-preprocessRaw(FlowSorted.DLPFC.450k)
Examples_Betas<-getBeta(Mset)
# Step 2: use the HiBED_deconvolution function in combinatation with the
# reference libraries for brain cell deconvolution.
HiBED_result<-HiBED_deconvolution(Examples_Betas, h=2)
head(HiBED_result)
#> Endothelial Stromal Astrocyte Microglial Oligodendrocyte GABA
#> 813_N NaN NaN 0.8548534 0.7915309 5.643616 14.867764
#> 1740_N NaN NaN 0.8524800 1.1596800 3.747840 17.805161
#> 1740_G 4.2758290 2.0241710 6.3462006 19.9935161 60.030283 3.336364
#> 1228_G 2.6479470 2.1120530 4.2803944 7.2064838 78.253122 2.508475
#> 813_G 2.5763484 1.9536516 5.4130230 14.4480688 69.668908 2.738889
#> 1228_N 0.5389908 0.7110092 1.5104187 1.6272037 7.832378 14.880146
#> GLU
#> 813_N 70.812236
#> 1740_N 70.134839
#> 1740_G 4.003636
#> 1228_G 2.991525
#> 813_G 3.211111
#> 1228_N 69.869854
sessionInfo()
#> R version 4.5.0 RC (2025-04-04 r88126)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] parallel stats4 stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] IlluminaHumanMethylation450kmanifest_0.4.0
#> [2] FlowSorted.DLPFC.450k_1.44.0
#> [3] FlowSorted.Blood.EPIC_2.12.0
#> [4] ExperimentHub_2.16.0
#> [5] AnnotationHub_3.16.0
#> [6] BiocFileCache_2.16.0
#> [7] dbplyr_2.5.0
#> [8] minfi_1.54.0
#> [9] bumphunter_1.50.0
#> [10] locfit_1.5-9.12
#> [11] iterators_1.0.14
#> [12] foreach_1.5.2
#> [13] Biostrings_2.76.0
#> [14] XVector_0.48.0
#> [15] SummarizedExperiment_1.38.0
#> [16] Biobase_2.68.0
#> [17] MatrixGenerics_1.20.0
#> [18] matrixStats_1.5.0
#> [19] GenomicRanges_1.60.0
#> [20] GenomeInfoDb_1.44.0
#> [21] IRanges_2.42.0
#> [22] S4Vectors_0.46.0
#> [23] BiocGenerics_0.54.0
#> [24] generics_0.1.3
#> [25] HiBED_1.6.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_2.0.0
#> [3] magrittr_2.0.3 GenomicFeatures_1.60.0
#> [5] rmarkdown_2.29 BiocIO_1.18.0
#> [7] vctrs_0.6.5 multtest_2.64.0
#> [9] memoise_2.0.1 Rsamtools_2.24.0
#> [11] DelayedMatrixStats_1.30.0 RCurl_1.98-1.17
#> [13] askpass_1.2.1 htmltools_0.5.8.1
#> [15] S4Arrays_1.8.0 curl_6.2.2
#> [17] Rhdf5lib_1.30.0 SparseArray_1.8.0
#> [19] rhdf5_2.52.0 sass_0.4.10
#> [21] nor1mix_1.3-3 bslib_0.9.0
#> [23] plyr_1.8.9 cachem_1.1.0
#> [25] GenomicAlignments_1.44.0 lifecycle_1.0.4
#> [27] pkgconfig_2.0.3 Matrix_1.7-3
#> [29] R6_2.6.1 fastmap_1.2.0
#> [31] GenomeInfoDbData_1.2.14 digest_0.6.37
#> [33] siggenes_1.82.0 reshape_0.8.9
#> [35] AnnotationDbi_1.70.0 RSQLite_2.3.9
#> [37] base64_2.0.2 filelock_1.0.3
#> [39] httr_1.4.7 abind_1.4-8
#> [41] compiler_4.5.0 beanplot_1.3.1
#> [43] rngtools_1.5.2 bit64_4.6.0-1
#> [45] BiocParallel_1.42.0 DBI_1.2.3
#> [47] HDF5Array_1.36.0 MASS_7.3-65
#> [49] openssl_2.3.2 rappdirs_0.3.3
#> [51] DelayedArray_0.34.0 rjson_0.2.23
#> [53] tools_4.5.0 rentrez_1.2.3
#> [55] glue_1.8.0 quadprog_1.5-8
#> [57] h5mread_1.0.0 restfulr_0.0.15
#> [59] nlme_3.1-168 rhdf5filters_1.20.0
#> [61] grid_4.5.0 tzdb_0.5.0
#> [63] preprocessCore_1.70.0 tidyr_1.3.1
#> [65] data.table_1.17.0 hms_1.1.3
#> [67] xml2_1.3.8 BiocVersion_3.21.1
#> [69] pillar_1.10.2 limma_3.64.0
#> [71] genefilter_1.90.0 splines_4.5.0
#> [73] dplyr_1.1.4 lattice_0.22-7
#> [75] survival_3.8-3 rtracklayer_1.68.0
#> [77] bit_4.6.0 GEOquery_2.76.0
#> [79] annotate_1.86.0 tidyselect_1.2.1
#> [81] knitr_1.50 xfun_0.52
#> [83] scrime_1.3.5 statmod_1.5.0
#> [85] UCSC.utils_1.4.0 yaml_2.3.10
#> [87] evaluate_1.0.3 codetools_0.2-20
#> [89] tibble_3.2.1 BiocManager_1.30.25
#> [91] cli_3.6.4 xtable_1.8-4
#> [93] jquerylib_0.1.4 Rcpp_1.0.14
#> [95] png_0.1-8 XML_3.99-0.18
#> [97] readr_2.1.5 blob_1.2.4
#> [99] mclust_6.1.1 doRNG_1.8.6.2
#> [101] sparseMatrixStats_1.20.0 bitops_1.0-9
#> [103] illuminaio_0.50.0 purrr_1.0.4
#> [105] crayon_1.5.3 rlang_1.1.6
#> [107] KEGGREST_1.48.0
References
Z Zhang, LA Salas et al. (2023) SHierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Under Review
J. Guintivano, et al. (2013). A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics, 8(3):290–302, 2013. doi: [10.4161/epi.23924] (https://dx.doi.org/10.4161/epi.23924).
Weightman Potter PG, et al. (2021) Attenuated Induction of the Unfolded Protein Response in Adult Human Primary Astrocytes in Response to Recurrent Low Glucose. Front Endocrinol (Lausanne) 2021;12:671724. doi: [10.3389/fendo.2021.671724] (https://dx.doi.org/10.3389/fendo.2021.671724).
Kozlenkov, et al. (2018) A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci. Adv. 2018;4:eaau6190. doi: [10.1126/sciadv.aau6190] (https://dx.doi.org/10.1126/sciadv.aau6190).
de Whitte, et al. (2022) Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biological Psychiatry March 15, 2022; 91:572–581. doi: [10.1016/j.biopsych.2021.10.020] (https://doi.org/10.1016/j.biopsych.2021.10.020).
X Lin, et al. (2018) Cell type-specific DNA methylation in neonatal cord tissue and cord blood: A 850K-reference panel and comparison of cell-types. Epigenetics. 13:941–58. doi: [10.1080/15592294.2018.1522929] (https://dx.doi.org/10.1080/15592294.2018.1522929).
LA Salas et al. (2022). Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nature Communications 13(1):761. doi:[10.1038/s41467-021-27864-7](https://dx.doi.org/10.1038/s41467-021-27864-7).
EA Houseman et al. (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86. doi: 10.1186/1471-2105-13-86.
minfi Tools to analyze & visualize Illumina Infinium methylation arrays.