Dimensionality reduction

Timothy Keyes

2025-04-15

library(tidytof)
library(dplyr)
library(ggplot2)

A useful tool for visualizing the phenotypic relationships between single cells and clusters of cells is dimensionality reduction, a form of unsupervised machine learning used to represent high-dimensional datasets in a smaller number of dimensions.

{tidytof} includes several dimensionality reduction algorithms commonly used by biologists: Principal component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE), and uniform manifold approximation and projection (UMAP). To apply these to a dataset, use tof_reduce_dimensions().

Dimensionality reduction with tof_reduce_dimensions().

Here is an example call to tof_reduce_dimensions() in which we use tSNE to visualize data in {tidytof}’s built-in phenograph_data dataset.

data(phenograph_data)

# perform the dimensionality reduction
phenograph_tsne <-
    phenograph_data |>
    tof_preprocess() |>
    tof_reduce_dimensions(method = "tsne")
#> Loading required namespace: Rtsne

# select only the tsne embedding columns
phenograph_tsne |>
    select(contains("tsne")) |>
    head()
#> # A tibble: 6 × 2
#>   .tsne1 .tsne2
#>    <dbl>  <dbl>
#> 1   3.44   7.34
#> 2   5.78   9.95
#> 3  26.3    8.05
#> 4  12.8   15.9 
#> 5   9.85   8.35
#> 6  16.4   20.6

By default, tof_reduce_dimensions will add reduced-dimension feature embeddings to the input tof_tbl and return the augmented tof_tbl (that is, a tof_tbl with new columns for each embedding dimension) as its result. To return only the features embeddings themselves, set augment to FALSE (as in tof_cluster).

phenograph_data |>
    tof_preprocess() |>
    tof_reduce_dimensions(method = "tsne", augment = FALSE)
#> # A tibble: 3,000 × 2
#>    .tsne1 .tsne2
#>     <dbl>  <dbl>
#>  1   2.97  16.3 
#>  2   9.05   9.26
#>  3  32.3    5.47
#>  4  16.7   14.4 
#>  5   6.64  17.9 
#>  6  22.3    9.96
#>  7  12.0    6.54
#>  8  25.0    6.73
#>  9  18.6    9.82
#> 10   4.04   7.99
#> # ℹ 2,990 more rows

Changing the method argument results in different low-dimensional embeddings:

phenograph_data |>
    tof_reduce_dimensions(method = "umap", augment = FALSE)
#> # A tibble: 3,000 × 2
#>     .umap1 .umap2
#>      <dbl>  <dbl>
#>  1 -10.2    3.16 
#>  2  -9.15   2.47 
#>  3  -7.48   0.424
#>  4  -6.38  -1.20 
#>  5 -10.3    2.86 
#>  6  -0.240 -4.18 
#>  7 -10.3    2.33 
#>  8  -7.54  -1.31 
#>  9  -5.59   0.669
#> 10  -9.28   4.74 
#> # ℹ 2,990 more rows

phenograph_data |>
    tof_reduce_dimensions(method = "pca", augment = FALSE)
#> # A tibble: 3,000 × 5
#>       .pc1     .pc2   .pc3    .pc4   .pc5
#>      <dbl>    <dbl>  <dbl>   <dbl>  <dbl>
#>  1 -2.77    1.23    -0.868  0.978   3.49 
#>  2 -0.969  -1.02    -0.787  1.22    0.329
#>  3 -2.36    2.54    -1.95  -0.882  -1.30 
#>  4 -3.68   -0.00565  0.962  0.410   0.788
#>  5 -4.03    2.07    -0.829  1.59    5.39 
#>  6 -2.59   -0.108    1.32  -1.41   -1.24 
#>  7 -1.55   -0.651   -0.233  1.08    0.129
#>  8 -1.18   -0.446    0.134 -0.771  -0.932
#>  9 -2.00   -0.485    0.593 -0.0416 -0.658
#> 10 -0.0356 -0.924   -0.692  1.45    0.270
#> # ℹ 2,990 more rows

Method specifications for tof_reduce_*() functions

tof_reduce_dimensions() provides a high-level API for three lower-level functions: tof_reduce_pca(), tof_reduce_umap(), and tof_reduce_tsne(). The help files for each of these functions provide details about the algorithm-specific method specifications associated with each of these dimensionality reduction approaches. For example, tof_reduce_pca takes the num_comp argument to determine how many principal components should be returned:

# 2 principal components
phenograph_data |>
    tof_reduce_pca(num_comp = 2)
#> # A tibble: 3,000 × 2
#>       .pc1     .pc2
#>      <dbl>    <dbl>
#>  1 -2.77    1.23   
#>  2 -0.969  -1.02   
#>  3 -2.36    2.54   
#>  4 -3.68   -0.00565
#>  5 -4.03    2.07   
#>  6 -2.59   -0.108  
#>  7 -1.55   -0.651  
#>  8 -1.18   -0.446  
#>  9 -2.00   -0.485  
#> 10 -0.0356 -0.924  
#> # ℹ 2,990 more rows
# 3 principal components
phenograph_data |>
    tof_reduce_pca(num_comp = 3)
#> # A tibble: 3,000 × 3
#>       .pc1     .pc2   .pc3
#>      <dbl>    <dbl>  <dbl>
#>  1 -2.77    1.23    -0.868
#>  2 -0.969  -1.02    -0.787
#>  3 -2.36    2.54    -1.95 
#>  4 -3.68   -0.00565  0.962
#>  5 -4.03    2.07    -0.829
#>  6 -2.59   -0.108    1.32 
#>  7 -1.55   -0.651   -0.233
#>  8 -1.18   -0.446    0.134
#>  9 -2.00   -0.485    0.593
#> 10 -0.0356 -0.924   -0.692
#> # ℹ 2,990 more rows

see ?tof_reduce_pca, ?tof_reduce_umap, and ?tof_reduce_tsne for additional details.

Visualization using tof_plot_cells_embedding()

Regardless of the method used, reduced-dimension feature embeddings can be visualized using {ggplot2} (or any graphics package). {tidytof} also provides some helper functions for easily generating dimensionality reduction plots from a tof_tbl or tibble with columns representing embedding dimensions:

# plot the tsne embeddings using color to distinguish between clusters
phenograph_tsne |>
    tof_plot_cells_embedding(
        embedding_cols = contains(".tsne"),
        color_col = phenograph_cluster
    )

plot of chunk unnamed-chunk-7


# plot the tsne embeddings using color to represent CD11b expression
phenograph_tsne |>
    tof_plot_cells_embedding(
        embedding_cols = contains(".tsne"),
        color_col = cd11b
    ) +
    ggplot2::scale_fill_viridis_c()

plot of chunk unnamed-chunk-7

Such visualizations can be helpful in qualitatively describing the phenotypic differences between the clusters in a dataset. For example, in the example above, we can see that one of the clusters has high CD11b expression, whereas the others have lower CD11b expression.

Session info

sessionInfo()
#> R version 4.5.0 RC (2025-04-04 r88126)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
#> [8] base     
#> 
#> other attached packages:
#>  [1] tidyr_1.3.1                 stringr_1.5.1              
#>  [3] HDCytoData_1.27.0           flowCore_2.20.0            
#>  [5] SummarizedExperiment_1.38.0 Biobase_2.68.0             
#>  [7] GenomicRanges_1.60.0        GenomeInfoDb_1.44.0        
#>  [9] IRanges_2.42.0              S4Vectors_0.46.0           
#> [11] MatrixGenerics_1.20.0       matrixStats_1.5.0          
#> [13] ExperimentHub_2.16.0        AnnotationHub_3.16.0       
#> [15] BiocFileCache_2.16.0        dbplyr_2.5.0               
#> [17] BiocGenerics_0.54.0         generics_0.1.3             
#> [19] forcats_1.0.0               ggplot2_3.5.2              
#> [21] dplyr_1.1.4                 tidytof_1.2.0              
#> 
#> loaded via a namespace (and not attached):
#>   [1] jsonlite_2.0.0          shape_1.4.6.1           magrittr_2.0.3         
#>   [4] farver_2.1.2            rmarkdown_2.29          vctrs_0.6.5            
#>   [7] memoise_2.0.1           sparsevctrs_0.3.3       htmltools_0.5.8.1      
#>  [10] S4Arrays_1.8.0          curl_6.2.2              SparseArray_1.8.0      
#>  [13] sass_0.4.10             parallelly_1.43.0       bslib_0.9.0            
#>  [16] lubridate_1.9.4         cachem_1.1.0            commonmark_1.9.5       
#>  [19] igraph_2.1.4            mime_0.13               lifecycle_1.0.4        
#>  [22] iterators_1.0.14        pkgconfig_2.0.3         Matrix_1.7-3           
#>  [25] R6_2.6.1                fastmap_1.2.0           GenomeInfoDbData_1.2.14
#>  [28] future_1.40.0           digest_0.6.37           colorspace_2.1-1       
#>  [31] AnnotationDbi_1.70.0    irlba_2.3.5.1           RSQLite_2.3.9          
#>  [34] labeling_0.4.3          filelock_1.0.3          cytolib_2.20.0         
#>  [37] yardstick_1.3.2         timechange_0.3.0        httr_1.4.7             
#>  [40] polyclip_1.10-7         abind_1.4-8             compiler_4.5.0         
#>  [43] bit64_4.6.0-1           withr_3.0.2             doParallel_1.0.17      
#>  [46] viridis_0.6.5           DBI_1.2.3               ggforce_0.4.2          
#>  [49] MASS_7.3-65             lava_1.8.1              embed_1.1.5            
#>  [52] rappdirs_0.3.3          DelayedArray_0.34.0     tools_4.5.0            
#>  [55] future.apply_1.11.3     nnet_7.3-20             glue_1.8.0             
#>  [58] grid_4.5.0              Rtsne_0.17              recipes_1.2.1          
#>  [61] gtable_0.3.6            tzdb_0.5.0              class_7.3-23           
#>  [64] data.table_1.17.0       hms_1.1.3               utf8_1.2.4             
#>  [67] tidygraph_1.3.1         XVector_0.48.0          RcppAnnoy_0.0.22       
#>  [70] markdown_2.0            ggrepel_0.9.6           BiocVersion_3.21.1     
#>  [73] foreach_1.5.2           pillar_1.10.2           RcppHNSW_0.6.0         
#>  [76] splines_4.5.0           tweenr_2.0.3            lattice_0.22-7         
#>  [79] survival_3.8-3          bit_4.6.0               RProtoBufLib_2.20.0    
#>  [82] tidyselect_1.2.1        Biostrings_2.76.0       knitr_1.50             
#>  [85] gridExtra_2.3           litedown_0.7            xfun_0.52              
#>  [88] graphlayouts_1.2.2      hardhat_1.4.1           timeDate_4041.110      
#>  [91] stringi_1.8.7           UCSC.utils_1.4.0        yaml_2.3.10            
#>  [94] evaluate_1.0.3          codetools_0.2-20        ggraph_2.2.1           
#>  [97] tibble_3.2.1            BiocManager_1.30.25     cli_3.6.4              
#> [100] uwot_0.2.3              rpart_4.1.24            munsell_0.5.1          
#> [103] jquerylib_0.1.4         Rcpp_1.0.14             globals_0.16.3         
#> [106] png_0.1-8               parallel_4.5.0          gower_1.0.2            
#> [109] readr_2.1.5             blob_1.2.4              listenv_0.9.1          
#> [112] glmnet_4.1-8            viridisLite_0.4.2       ipred_0.9-15           
#> [115] ggridges_0.5.6          scales_1.3.0            prodlim_2024.06.25     
#> [118] purrr_1.0.4             crayon_1.5.3            rlang_1.1.6            
#> [121] KEGGREST_1.48.0