chevreulProcess 1.0.0
chevreulProcess
R
is an open-source statistical environment which can be easily modified
to enhance its functionality via packages. chevreulProcess
is a R
package available via the Bioconductor
repository
for packages. R
can be installed on any operating system from
CRAN after which you can install
chevreulProcess by using the following commands in your R
session:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("chevreulProcess")
The chevreulProcess package is designed for single-cell RNA
sequencing data. The functions included within this package are derived from
other packages that have implemented the infrastructure needed for RNA-seq data
processing and analysis. Packages that have been instrumental in the
development of chevreulProcess include,
Biocpkg("SummarizedExperiment")
and Biocpkg("scater")
.
R
and Bioconductor
have a steep learning curve so it is critical to
learn where to ask for help. The
Bioconductor support site is the main
resource for getting help: remember to use the chevreulProcess
tag and check
the older posts.
chevreulProcess
The chevreulProcess
package contains functions to preprocess, cluster,
visualize, and perform other analyses on scRNA-seq data. It also contains a
shiny app for easy
visualization and analysis of scRNA data.
chvereul
uses SingelCellExperiment (SCE) object type
(from SingleCellExperiment)
to store expression and other metadata from single-cell experiments.
This package features functions capable of:
library("chevreulProcess")
# Load the data
data("small_example_dataset")
R
session information.
#> R version 4.5.0 RC (2025-04-04 r88126)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] chevreulProcess_1.0.0 scater_1.36.0
#> [3] ggplot2_3.5.2 scuttle_1.18.0
#> [5] SingleCellExperiment_1.30.0 SummarizedExperiment_1.38.0
#> [7] Biobase_2.68.0 GenomicRanges_1.60.0
#> [9] GenomeInfoDb_1.44.0 IRanges_2.42.0
#> [11] S4Vectors_0.46.0 BiocGenerics_0.54.0
#> [13] generics_0.1.3 MatrixGenerics_1.20.0
#> [15] matrixStats_1.5.0 BiocStyle_2.36.0
#>
#> loaded via a namespace (and not attached):
#> [1] jsonlite_2.0.0 shape_1.4.6.1
#> [3] magrittr_2.0.3 ggbeeswarm_0.7.2
#> [5] GenomicFeatures_1.60.0 rmarkdown_2.29
#> [7] GlobalOptions_0.1.2 fs_1.6.6
#> [9] BiocIO_1.18.0 vctrs_0.6.5
#> [11] memoise_2.0.1 Rsamtools_2.24.0
#> [13] DelayedMatrixStats_1.30.0 RCurl_1.98-1.17
#> [15] htmltools_0.5.8.1 S4Arrays_1.8.0
#> [17] curl_6.2.2 BiocNeighbors_2.2.0
#> [19] SparseArray_1.8.0 sass_0.4.10
#> [21] bslib_0.9.0 cachem_1.1.0
#> [23] ResidualMatrix_1.18.0 GenomicAlignments_1.44.0
#> [25] igraph_2.1.4 lifecycle_1.0.4
#> [27] pkgconfig_2.0.3 rsvd_1.0.5
#> [29] Matrix_1.7-3 R6_2.6.1
#> [31] fastmap_1.2.0 GenomeInfoDbData_1.2.14
#> [33] digest_0.6.37 colorspace_2.1-1
#> [35] AnnotationDbi_1.70.0 dqrng_0.4.1
#> [37] irlba_2.3.5.1 RSQLite_2.3.9
#> [39] beachmat_2.24.0 httr_1.4.7
#> [41] abind_1.4-8 compiler_4.5.0
#> [43] bit64_4.6.0-1 withr_3.0.2
#> [45] BiocParallel_1.42.0 viridis_0.6.5
#> [47] DBI_1.2.3 DelayedArray_0.34.0
#> [49] rjson_0.2.23 bluster_1.18.0
#> [51] tools_4.5.0 vipor_0.4.7
#> [53] beeswarm_0.4.0 glue_1.8.0
#> [55] restfulr_0.0.15 batchelor_1.24.0
#> [57] grid_4.5.0 cluster_2.1.8.1
#> [59] megadepth_1.18.0 gtable_0.3.6
#> [61] tzdb_0.5.0 ensembldb_2.32.0
#> [63] hms_1.1.3 metapod_1.16.0
#> [65] BiocSingular_1.24.0 ScaledMatrix_1.16.0
#> [67] XVector_0.48.0 stringr_1.5.1
#> [69] ggrepel_0.9.6 pillar_1.10.2
#> [71] limma_3.64.0 circlize_0.4.16
#> [73] dplyr_1.1.4 lattice_0.22-7
#> [75] rtracklayer_1.68.0 bit_4.6.0
#> [77] tidyselect_1.2.1 locfit_1.5-9.12
#> [79] Biostrings_2.76.0 knitr_1.50
#> [81] gridExtra_2.3 bookdown_0.43
#> [83] ProtGenerics_1.40.0 edgeR_4.6.0
#> [85] cmdfun_1.0.2 xfun_0.52
#> [87] statmod_1.5.0 stringi_1.8.7
#> [89] UCSC.utils_1.4.0 EnsDb.Hsapiens.v86_2.99.0
#> [91] lazyeval_0.2.2 yaml_2.3.10
#> [93] evaluate_1.0.3 codetools_0.2-20
#> [95] tibble_3.2.1 BiocManager_1.30.25
#> [97] cli_3.6.4 munsell_0.5.1
#> [99] jquerylib_0.1.4 Rcpp_1.0.14
#> [101] png_0.1-8 XML_3.99-0.18
#> [103] parallel_4.5.0 readr_2.1.5
#> [105] blob_1.2.4 AnnotationFilter_1.32.0
#> [107] scran_1.36.0 sparseMatrixStats_1.20.0
#> [109] bitops_1.0-9 viridisLite_0.4.2
#> [111] scales_1.3.0 purrr_1.0.4
#> [113] crayon_1.5.3 rlang_1.1.6
#> [115] KEGGREST_1.48.0