chevreulPlot 1.0.0
chevreulPlot
R
is an open-source statistical environment which can be easily modified
to enhance its functionality via packages. chevreulPlot is a R
package available via the Bioconductor repository
for packages. R
can be installed on any operating system from
CRAN after which you can install
chevreulPlot by using the following commands in your R
session:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("chevreulPlot")
The chevreulPlot package is designed for single-cell RNA sequencing
data. The functions included within this package are derived from other
packages that have implemented the infrastructure needed for RNA-seq data
processing and analysis. Packages that have been instrumental in the
development of chevreulPlot include,
Biocpkg("SummarizedExperiment")
and Biocpkg("scater")
.
R
and Bioconductor
have a steep learning curve so it is critical to
learn where to ask for help. The
Bioconductor support site is the main
resource for getting help: remember to use the chevreulPlot
tag and check
the older posts.
chevreulPlot
The chevreulPlot
package contains functions to preprocess, cluster, visualize, and
perform other analyses on scRNA-seq data. It also contains a shiny app for easy
visualization and analysis of scRNA data.
chvereul
uses SingelCellExperiment (SCE) object type
(from SingleCellExperiment)
to store expression and other metadata from single-cell experiments.
This package features functions capable of:
library("chevreulPlot")
# Load the data
data("small_example_dataset")
sessionInfo()
#> R version 4.5.0 RC (2025-04-04 r88126)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] chevreulPlot_1.0.0 chevreulProcess_1.0.0
#> [3] scater_1.36.0 ggplot2_3.5.2
#> [5] scuttle_1.18.0 SingleCellExperiment_1.30.0
#> [7] SummarizedExperiment_1.38.0 Biobase_2.68.0
#> [9] GenomicRanges_1.60.0 GenomeInfoDb_1.44.0
#> [11] IRanges_2.42.0 S4Vectors_0.46.0
#> [13] BiocGenerics_0.54.0 generics_0.1.3
#> [15] MatrixGenerics_1.20.0 matrixStats_1.5.0
#> [17] BiocStyle_2.36.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_2.0.0
#> [3] shape_1.4.6.1 magrittr_2.0.3
#> [5] ggbeeswarm_0.7.2 GenomicFeatures_1.60.0
#> [7] farver_2.1.2 rmarkdown_2.29
#> [9] GlobalOptions_0.1.2 fs_1.6.6
#> [11] BiocIO_1.18.0 vctrs_0.6.5
#> [13] memoise_2.0.1 Rsamtools_2.24.0
#> [15] DelayedMatrixStats_1.30.0 RCurl_1.98-1.17
#> [17] forcats_1.0.0 htmltools_0.5.8.1
#> [19] S4Arrays_1.8.0 curl_6.2.2
#> [21] BiocNeighbors_2.2.0 SparseArray_1.8.0
#> [23] sass_0.4.10 bslib_0.9.0
#> [25] htmlwidgets_1.6.4 plotly_4.10.4
#> [27] cachem_1.1.0 ResidualMatrix_1.18.0
#> [29] GenomicAlignments_1.44.0 igraph_2.1.4
#> [31] iterators_1.0.14 lifecycle_1.0.4
#> [33] pkgconfig_2.0.3 rsvd_1.0.5
#> [35] Matrix_1.7-3 R6_2.6.1
#> [37] fastmap_1.2.0 clue_0.3-66
#> [39] GenomeInfoDbData_1.2.14 digest_0.6.37
#> [41] colorspace_2.1-1 patchwork_1.3.0
#> [43] AnnotationDbi_1.70.0 dqrng_0.4.1
#> [45] irlba_2.3.5.1 RSQLite_2.3.9
#> [47] beachmat_2.24.0 httr_1.4.7
#> [49] abind_1.4-8 compiler_4.5.0
#> [51] doParallel_1.0.17 bit64_4.6.0-1
#> [53] withr_3.0.2 BiocParallel_1.42.0
#> [55] viridis_0.6.5 DBI_1.2.3
#> [57] DelayedArray_0.34.0 rjson_0.2.23
#> [59] bluster_1.18.0 tools_4.5.0
#> [61] vipor_0.4.7 beeswarm_0.4.0
#> [63] glue_1.8.0 restfulr_0.0.15
#> [65] batchelor_1.24.0 grid_4.5.0
#> [67] cluster_2.1.8.1 megadepth_1.18.0
#> [69] gtable_0.3.6 tzdb_0.5.0
#> [71] tidyr_1.3.1 ensembldb_2.32.0
#> [73] data.table_1.17.0 hms_1.1.3
#> [75] metapod_1.16.0 BiocSingular_1.24.0
#> [77] ScaledMatrix_1.16.0 XVector_0.48.0
#> [79] foreach_1.5.2 stringr_1.5.1
#> [81] ggrepel_0.9.6 pillar_1.10.2
#> [83] limma_3.64.0 circlize_0.4.16
#> [85] dplyr_1.1.4 lattice_0.22-7
#> [87] rtracklayer_1.68.0 bit_4.6.0
#> [89] tidyselect_1.2.1 ComplexHeatmap_2.24.0
#> [91] locfit_1.5-9.12 Biostrings_2.76.0
#> [93] knitr_1.50 gridExtra_2.3
#> [95] bookdown_0.43 ProtGenerics_1.40.0
#> [97] edgeR_4.6.0 cmdfun_1.0.2
#> [99] xfun_0.52 statmod_1.5.0
#> [101] stringi_1.8.7 UCSC.utils_1.4.0
#> [103] EnsDb.Hsapiens.v86_2.99.0 lazyeval_0.2.2
#> [105] yaml_2.3.10 evaluate_1.0.3
#> [107] codetools_0.2-20 tibble_3.2.1
#> [109] wiggleplotr_1.32.0 BiocManager_1.30.25
#> [111] cli_3.6.4 munsell_0.5.1
#> [113] jquerylib_0.1.4 Rcpp_1.0.14
#> [115] png_0.1-8 XML_3.99-0.18
#> [117] parallel_4.5.0 readr_2.1.5
#> [119] blob_1.2.4 AnnotationFilter_1.32.0
#> [121] scran_1.36.0 sparseMatrixStats_1.20.0
#> [123] bitops_1.0-9 viridisLite_0.4.2
#> [125] scales_1.3.0 purrr_1.0.4
#> [127] crayon_1.5.3 GetoptLong_1.0.5
#> [129] rlang_1.1.6 KEGGREST_1.48.0