Installation

To install and load NBAMSeq

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("NBAMSeq")
library(NBAMSeq)

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

## An example of countData
n = 50  ## n stands for number of genes
m = 20   ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)
      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1       3       7       2     569       1     273       1     178      53
gene2      23      17     164       5      26      30      81     173       1
gene3      66     107      23       1      81       2       5      21      17
gene4       1     121      91       3       1       6       8     500       1
gene5      58       7     100     112     307       5     216     273     144
gene6      10     341     125       1      50       3       3       1      11
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1       34      267      339        3       20      102       26      231
gene2       33        1       27        1      183      395       49       11
gene3      419      379       15      334        2        1       22        1
gene4       69       36        1      356      127        1      119        1
gene5      335      118        1      309        6       70      174      174
gene6       10        6       34      141       13      322      626       14
      sample18 sample19 sample20
gene1      175       49       97
gene2        1        6        1
gene3      287        1      229
gene4       12      171       16
gene5       62      241       10
gene6       23      564       98

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
    var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)
           pheno       var1       var2       var3 var4
sample1 36.96606 -0.0409631 -1.9711520 -1.2225683    0
sample2 28.50380  0.2950463  0.1671848  1.2710449    0
sample3 77.98221 -1.0282046 -1.4236736  0.4726612    1
sample4 59.47101 -1.4239704 -0.1264069 -2.1995088    2
sample5 30.73332 -1.0728392  0.3776688 -1.2709749    0
sample6 35.89123 -1.4921051 -0.3662688 -0.3196610    2

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

design = ~ s(pheno) + var1 + var2 + var3 + var4

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

gsd = NBAMSeqDataSet(countData = countData, colData = colData, design = design)
gsd
class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

gsd = NBAMSeq(gsd)

Several other arguments in NBAMSeq function are available for users to customize the analysis.

library(BiocParallel)
gsd = NBAMSeq(gsd, parallel = TRUE)

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

res1 = results(gsd, name = "pheno")
head(res1)
DataFrame with 6 rows and 7 columns
       baseMean       edf      stat    pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  131.4044   1.00006 1.8021251  0.179469  0.662994   235.286   242.256
gene2   67.3163   1.00007 0.4465512  0.504036  0.984680   203.986   210.956
gene3   99.2105   1.00005 0.1459134  0.702566  0.984680   215.985   222.955
gene4   57.2586   1.00005 0.0623288  0.802964  0.984680   198.152   205.122
gene5  109.6867   1.00007 0.2936885  0.587955  0.984680   248.947   255.917
gene6  121.9993   1.04764 0.1814121  0.670523  0.984680   228.523   235.541

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

res2 = results(gsd, name = "var1")
head(res2)
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  131.4044 -0.725533  0.427993 -1.695196 0.0900382  0.282036   235.286
gene2   67.3163  1.050456  0.424515  2.474487 0.0133428  0.092982   203.986
gene3   99.2105 -1.058589  0.442473 -2.392440 0.0167368  0.092982   215.985
gene4   57.2586 -0.124854  0.400813 -0.311501 0.7554199  0.858432   198.152
gene5  109.6867  0.344821  0.370245  0.931332 0.3516821  0.666748   248.947
gene6  121.9993  1.146610  0.450536  2.544991 0.0109281  0.092982   228.523
            BIC
      <numeric>
gene1   242.256
gene2   210.956
gene3   222.955
gene4   205.122
gene5   255.917
gene6   235.541

For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

res3 = results(gsd, contrast = c("var4", "2", "0"))
head(res3)
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  131.4044 -1.485366  1.003650 -1.479965 0.1388827  0.547083   235.286
gene2   67.3163 -0.564355  0.983649 -0.573736 0.5661467  0.884604   203.986
gene3   99.2105 -2.466048  1.040076 -2.371026 0.0177388  0.177388   215.985
gene4   57.2586  1.339206  0.937572  1.428378 0.1531831  0.547083   198.152
gene5  109.6867  0.293603  0.868443  0.338080 0.7353029  0.972068   248.947
gene6  121.9993 -0.517977  1.061886 -0.487790 0.6256987  0.920145   228.523
            BIC
      <numeric>
gene1   242.256
gene2   210.956
gene3   222.955
gene4   205.122
gene5   255.917
gene6   235.541

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

## assuming we are interested in the nonlinear relationship between gene10's 
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]  
sf = getsf(gsd)  ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf) 
head(res1)
DataFrame with 6 rows and 7 columns
        baseMean       edf      stat      pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric>   <numeric> <numeric> <numeric> <numeric>
gene20  106.3079   1.00007  11.13793 0.000846273 0.0423137   203.841   210.811
gene30  124.0888   1.00016   9.51175 0.002045404 0.0511351   213.178   220.149
gene45   92.4817   1.16342   4.66226 0.039174751 0.6301610   211.393   218.526
gene23   40.8184   1.00021   3.48176 0.062113842 0.6301610   196.694   203.664
gene28   52.3966   1.00011   3.21656 0.072916317 0.6301610   205.819   212.790
gene49   87.2911   2.03428   6.52199 0.075619315 0.6301610   200.269   208.269
library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
    geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
    annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1, 
    label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
    ggtitle(setTitle)+
    theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))

Session info

sessionInfo()
R version 4.5.0 RC (2025-04-04 r88126)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggplot2_3.5.2               BiocParallel_1.42.0        
 [3] NBAMSeq_1.24.0              SummarizedExperiment_1.38.0
 [5] Biobase_2.68.0              GenomicRanges_1.60.0       
 [7] GenomeInfoDb_1.44.0         IRanges_2.42.0             
 [9] S4Vectors_0.46.0            BiocGenerics_0.54.0        
[11] generics_0.1.3              MatrixGenerics_1.20.0      
[13] matrixStats_1.5.0          

loaded via a namespace (and not attached):
 [1] KEGGREST_1.48.0         gtable_0.3.6            xfun_0.52              
 [4] bslib_0.9.0             lattice_0.22-7          vctrs_0.6.5            
 [7] tools_4.5.0             parallel_4.5.0          tibble_3.2.1           
[10] AnnotationDbi_1.70.0    RSQLite_2.3.9           blob_1.2.4             
[13] pkgconfig_2.0.3         Matrix_1.7-3            lifecycle_1.0.4        
[16] GenomeInfoDbData_1.2.14 farver_2.1.2            compiler_4.5.0         
[19] Biostrings_2.76.0       munsell_0.5.1           DESeq2_1.48.0          
[22] codetools_0.2-20        htmltools_0.5.8.1       sass_0.4.10            
[25] yaml_2.3.10             pillar_1.10.2           crayon_1.5.3           
[28] jquerylib_0.1.4         DelayedArray_0.34.0     cachem_1.1.0           
[31] abind_1.4-8             nlme_3.1-168            genefilter_1.90.0      
[34] tidyselect_1.2.1        locfit_1.5-9.12         digest_0.6.37          
[37] dplyr_1.1.4             labeling_0.4.3          splines_4.5.0          
[40] fastmap_1.2.0           grid_4.5.0              colorspace_2.1-1       
[43] cli_3.6.4               SparseArray_1.8.0       magrittr_2.0.3         
[46] S4Arrays_1.8.0          survival_3.8-3          XML_3.99-0.18          
[49] withr_3.0.2             scales_1.3.0            UCSC.utils_1.4.0       
[52] bit64_4.6.0-1           rmarkdown_2.29          XVector_0.48.0         
[55] httr_1.4.7              bit_4.6.0               png_0.1-8              
[58] memoise_2.0.1           evaluate_1.0.3          knitr_1.50             
[61] mgcv_1.9-3              rlang_1.1.6             Rcpp_1.0.14            
[64] xtable_1.8-4            glue_1.8.0              DBI_1.2.3              
[67] annotate_1.86.0         jsonlite_2.0.0          R6_2.6.1               

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.