DelayedTensor 1.14.0
Authors: Koki Tsuyuzaki [aut, cre]
Last modified: 2025-04-15 15:16:31.230983
Compiled: Tue Apr 15 18:09:59 2025
einsum
einsum
is an easy and intuitive way to write tensor operations.
It was originally introduced by
Numpy
1 https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
package of Python but similar tools have been implemented in other languages
(e.g. R, Julia) inspired by Numpy
.
In this vignette, we will use CRAN einsum package first.
einsum
is named after
Einstein summation2 https://en.wikipedia.org/wiki/Einstein_notation
introduced by Albert Einstein,
which is a notational convention that implies summation over
a set of indexed terms in a formula.
Here, we consider a simple example of einsum
; matrix multiplication.
If we naively implement the matrix multiplication,
the calculation would look like the following in a for loop.
A <- matrix(runif(3*4), nrow=3, ncol=4)
B <- matrix(runif(4*5), nrow=4, ncol=5)
C <- matrix(0, nrow=3, ncol=5)
I <- nrow(A)
J <- ncol(A)
K <- ncol(B)
for(i in 1:I){
for(j in 1:J){
for(k in 1:K){
C[i,k] = C[i,k] + A[i,j] * B[j,k]
}
}
}
Therefore, any programming language can implement this. However, when analyzing tensor data, such operations tend to be more complicated and increase the possibility of causing bugs because the order of tensors is larger or more tensors are handled simultaneously. In addition, several programming languages, especially R, are known to significantly slow down the speed of computation if the code is written in for loop.
Obviously, in the case of the R language, it should be executed using the built-in matrix multiplication function (%*%) prepared by the R, as shown below.
C <- A %*% B
However, more complex operations than matrix multiplication are not always provided by programming languages as standard.
einsum
is a function that solves such a problem.
To put it simply, einsum
is a wrapper for the for loop above.
Like the Einstein summation, it omits many notations such as for,
array size (e.g. I, J, and K), brackets (e.g. {}, (), and []),
and even addition operator (+) and
extracts the array subscripts (e.g. i, j, and k)
to concisely express the tensor operation as follows.
suppressPackageStartupMessages(library("einsum"))
C <- einsum('ij,jk->ik', A, B)
DelayedTensor
CRAN einsum is easy to use because the syntax is almost
the same as that of Numpy
‘s einsum
,
except that it prohibits the implicit modes that do not use’->’.
It is extremely fast because the internal calculation
is actually performed by C++.
When the input tensor is huge, however,
it is not scalable because it assumes that the input is R’s standard array.
Using einsum
of DelayedTensor,
we can augment the CRAN einsum
’s functionality;
in DelayedTensor,
the input DelayedArray objects are divided into
multiple block tensors and the CRAN einsum
is incremently applied in the block processing.
A surprisingly large number of tensor operations can be handled
uniformly in einsum
.
In more detail, einsum
is capable of performing any tensor operation
that can be described by a combination of the following
three operations3 https://ajcr.net/Basic-guide-to-einsum/.
Some typical operations are introduced below. Here we use the arrays and DelayedArray objects below.
suppressPackageStartupMessages(library("DelayedTensor"))
suppressPackageStartupMessages(library("DelayedArray"))
arrA <- array(runif(3), dim=c(3))
arrB <- array(runif(3*3), dim=c(3,3))
arrC <- array(runif(3*4), dim=c(3,4))
arrD <- array(runif(3*3*3), dim=c(3,3,3))
arrE <- array(runif(3*4*5), dim=c(3,4,5))
darrA <- DelayedArray(arrA)
darrB <- DelayedArray(arrB)
darrC <- DelayedArray(arrC)
darrD <- DelayedArray(arrD)
darrE <- DelayedArray(arrE)
If the same subscript is written on both sides of ->,
einsum
will simply output the object without any calculation.
einsum::einsum('i->i', arrA)
## [1] 0.2775717 0.3304263 0.5440175
DelayedTensor::einsum('i->i', darrA)
## <3> DelayedArray object of type "double":
## [1] [2] [3]
## 0.2775717 0.3304263 0.5440175
einsum::einsum('ij->ij', arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.2578660 0.1956988 0.4572468 0.7892576
## [2,] 0.8002069 0.6040836 0.3933847 0.2045509
## [3,] 0.4877920 0.6722462 0.5511846 0.3752500
DelayedTensor::einsum('ij->ij', darrC)
## <3 x 4> DelayedArray object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.2578660 0.1956988 0.4572468 0.7892576
## [2,] 0.8002069 0.6040836 0.3933847 0.2045509
## [3,] 0.4877920 0.6722462 0.5511846 0.3752500
einsum::einsum('ijk->ijk', arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1554425 0.6359502 0.8768283 0.3735319
## [2,] 0.1506904 0.7955933 0.7842235 0.1574334
## [3,] 0.3725250 0.7471363 0.8487112 0.2658777
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5706505 0.4155252 0.1780695 0.3705784
## [2,] 0.4368537 0.3397106 0.2444232 0.4917839
## [3,] 0.2225750 0.3366087 0.6155839 0.8627678
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.90483804 0.546591195 0.7625180 0.02102719
## [2,] 0.01750911 0.821600072 0.0592665 0.52558408
## [3,] 0.84044163 0.001331922 0.8443992 0.22431077
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.7877011 0.4071196 0.7039843 0.29556374
## [2,] 0.4439271 0.6211263 0.7154275 0.45036684
## [3,] 0.4478670 0.4799920 0.8943043 0.07695253
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1496525 0.4205865 0.02328423 0.6782733
## [2,] 0.9275786 0.3383076 0.96484206 0.3468066
## [3,] 0.2580382 0.1040867 0.51688875 0.5540887
DelayedTensor::einsum('ijk->ijk', darrE)
## <3 x 4 x 5> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.1554425 0.6359502 0.8768283 0.3735319
## [2,] 0.1506904 0.7955933 0.7842235 0.1574334
## [3,] 0.3725250 0.7471363 0.8487112 0.2658777
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.5706505 0.4155252 0.1780695 0.3705784
## [2,] 0.4368537 0.3397106 0.2444232 0.4917839
## [3,] 0.2225750 0.3366087 0.6155839 0.8627678
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.904838036 0.546591195 0.762518018 0.021027189
## [2,] 0.017509109 0.821600072 0.059266499 0.525584084
## [3,] 0.840441628 0.001331922 0.844399190 0.224310770
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.78770111 0.40711960 0.70398432 0.29556374
## [2,] 0.44392706 0.62112629 0.71542748 0.45036684
## [3,] 0.44786695 0.47999202 0.89430429 0.07695253
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.14965247 0.42058651 0.02328423 0.67827333
## [2,] 0.92757862 0.33830764 0.96484206 0.34680664
## [3,] 0.25803821 0.10408668 0.51688875 0.55408868
We can also extract the diagonal elements as follows.
einsum::einsum('ii->i', arrB)
## [1] 0.06069284 0.25288415 0.73022772
DelayedTensor::einsum('ii->i', darrB)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.06069284 0.25288415 0.73022772
einsum::einsum('iii->i', arrD)
## [1] 0.1765367 0.5950856 0.8940914
DelayedTensor::einsum('iii->i', darrD)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.1765367 0.5950856 0.8940914
By using multiple arrays or DelayedArray objects as input and writing “,” on the right side of ->, multiplication will be performed.
Hadamard Product can also be implemented in einsum
,
multiplying by the product of each element.
einsum::einsum('i,i->i', arrA, arrA)
## [1] 0.07704605 0.10918153 0.29595504
DelayedTensor::einsum('i,i->i', darrA, darrA)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.07704605 0.10918153 0.29595504
einsum::einsum('ij,ij->ij', arrC, arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.06649487 0.03829802 0.2090746 0.62292755
## [2,] 0.64033113 0.36491696 0.1547516 0.04184106
## [3,] 0.23794107 0.45191493 0.3038045 0.14081255
DelayedTensor::einsum('ij,ij->ij', darrC, darrC)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.06649487 0.03829802 0.20907465 0.62292755
## [2,] 0.64033113 0.36491696 0.15475155 0.04184106
## [3,] 0.23794107 0.45191493 0.30380447 0.14081255
einsum::einsum('ijk,ijk->ijk', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02416239 0.4044326 0.7688279 0.13952609
## [2,] 0.02270761 0.6329686 0.6150065 0.02478527
## [3,] 0.13877490 0.5582126 0.7203108 0.07069093
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.32564197 0.1726612 0.03170875 0.1373284
## [2,] 0.19084119 0.1154033 0.05974271 0.2418514
## [3,] 0.04953964 0.1133054 0.37894355 0.7443683
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.8187318719 2.987619e-01 0.581433727 0.0004421427
## [2,] 0.0003065689 6.750267e-01 0.003512518 0.2762386296
## [3,] 0.7063421303 1.774016e-06 0.713009992 0.0503153214
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6204730 0.1657464 0.4955939 0.087357927
## [2,] 0.1970712 0.3857979 0.5118365 0.202830289
## [3,] 0.2005848 0.2303923 0.7997802 0.005921693
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02239586 0.17689301 0.0005421553 0.4600547
## [2,] 0.86040209 0.11445206 0.9309201924 0.1202748
## [3,] 0.06658372 0.01083404 0.2671739765 0.3070143
DelayedTensor::einsum('ijk,ijk->ijk', darrE, darrE)
## <3 x 4 x 5> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.02416239 0.40443263 0.76882785 0.13952609
## [2,] 0.02270761 0.63296865 0.61500646 0.02478527
## [3,] 0.13877490 0.55821258 0.72031076 0.07069093
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.32564197 0.17266116 0.03170875 0.13732838
## [2,] 0.19084119 0.11540329 0.05974271 0.24185143
## [3,] 0.04953964 0.11330543 0.37894355 0.74436832
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 8.187319e-01 2.987619e-01 5.814337e-01 4.421427e-04
## [2,] 3.065689e-04 6.750267e-01 3.512518e-03 2.762386e-01
## [3,] 7.063421e-01 1.774016e-06 7.130100e-01 5.031532e-02
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.620473042 0.165746368 0.495593926 0.087357927
## [2,] 0.197071237 0.385797867 0.511836482 0.202830289
## [3,] 0.200584809 0.230392344 0.799780170 0.005921693
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.0223958620 0.1768930086 0.0005421553 0.4600547083
## [2,] 0.8604020896 0.1144520582 0.9309201924 0.1202748459
## [3,] 0.0665837178 0.0108340374 0.2671739765 0.3070142605
The outer product can also be implemented in einsum
,
in which the subscripts in the input array are all different,
and all of them are kept.
einsum::einsum('i,j->ij', arrA, arrA)
## [,1] [,2] [,3]
## [1,] 0.07704605 0.09171698 0.1510039
## [2,] 0.09171698 0.10918153 0.1797577
## [3,] 0.15100386 0.17975768 0.2959550
DelayedTensor::einsum('i,j->ij', darrA, darrA)
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.07704605 0.09171698 0.15100386
## [2,] 0.09171698 0.10918153 0.17975768
## [3,] 0.15100386 0.17975768 0.29595504
einsum::einsum('ij,klm->ijklm', arrC, arrE)
## , , 1, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04008335 0.03041992 0.07107561 0.12268421
## [2,] 0.12438620 0.09390029 0.06114873 0.03179591
## [3,] 0.07582364 0.10449566 0.08567754 0.05832981
##
## , , 2, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03885794 0.02948994 0.06890272 0.11893357
## [2,] 0.12058353 0.09102962 0.05927932 0.03082386
## [3,] 0.07350559 0.10130107 0.08305825 0.05654658
##
## , , 3, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09606154 0.0729027 0.1703359 0.29401821
## [2,] 0.29809711 0.2250363 0.1465457 0.07620032
## [3,] 0.18171475 0.2504285 0.2053301 0.13979001
##
## , , 1, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1639899 0.1244547 0.2907862 0.5019285
## [2,] 0.5088917 0.3841671 0.2501731 0.1300842
## [3,] 0.3102114 0.4275151 0.3505260 0.2386403
##
## , , 2, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2051565 0.1556966 0.3637825 0.6279280
## [2,] 0.6366392 0.4806048 0.3129742 0.1627393
## [3,] 0.3880841 0.5348345 0.4385188 0.2985464
##
## , , 3, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1926610 0.1462137 0.3416257 0.5896830
## [2,] 0.5978636 0.4513327 0.2939120 0.1528274
## [3,] 0.3644471 0.5022595 0.4118100 0.2803629
##
## , , 1, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2261042 0.1715942 0.4009269 0.6920434
## [2,] 0.7016441 0.5296776 0.3449309 0.1793560
## [3,] 0.4277099 0.5894445 0.4832943 0.3290298
##
## , , 2, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2022246 0.1534716 0.3585837 0.6189543
## [2,] 0.6275411 0.4737365 0.3085015 0.1604136
## [3,] 0.3825380 0.5271912 0.4322519 0.2942798
##
## , , 3, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2188538 0.1660918 0.3880705 0.6698518
## [2,] 0.6791446 0.5126925 0.3338700 0.1736046
## [3,] 0.4139946 0.5705429 0.4677966 0.3184789
##
## , , 1, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09632118 0.07309975 0.1707963 0.29481290
## [2,] 0.29890283 0.22564450 0.1469418 0.07640628
## [3,] 0.18220589 0.25110540 0.2058850 0.14016784
##
## , , 2, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04059672 0.03080953 0.07198592 0.12425550
## [2,] 0.12597929 0.09510292 0.06193189 0.03220314
## [3,] 0.07679475 0.10583399 0.08677486 0.05907688
##
## , , 3, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06856081 0.05203194 0.1215717 0.20984597
## [2,] 0.21275715 0.16061233 0.1045922 0.05438551
## [3,] 0.12969301 0.17873525 0.1465477 0.09977059
##
## , , 1, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1471514 0.1116756 0.2609281 0.4503902
## [2,] 0.4566385 0.3447206 0.2244852 0.1167271
## [3,] 0.2783588 0.3836176 0.3145338 0.2141366
##
## , , 2, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1126497 0.08549175 0.1997500 0.34479013
## [2,] 0.3495734 0.26389617 0.1718516 0.08935882
## [3,] 0.2130938 0.29367326 0.2407871 0.16392936
##
## , , 3, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05739453 0.04355767 0.10177172 0.17566903
## [2,] 0.17810608 0.13445392 0.08755762 0.04552792
## [3,] 0.10857033 0.14962521 0.12267993 0.08352128
##
## , , 1, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1071498 0.08131778 0.1899976 0.32795639
## [2,] 0.3325061 0.25101193 0.1634613 0.08499604
## [3,] 0.2026899 0.27933520 0.2290311 0.15592581
##
## , , 2, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08759981 0.06648096 0.1553316 0.2681192
## [2,] 0.27183877 0.20521359 0.1336370 0.0694881
## [3,] 0.16570812 0.22836915 0.1872433 0.1274764
##
## , , 3, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08679994 0.06587392 0.1539133 0.26567099
## [2,] 0.26935663 0.20333980 0.1324167 0.06885361
## [3,] 0.16419506 0.22628393 0.1855335 0.12631242
##
## , , 1, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04591807 0.03484799 0.08142172 0.14054272
## [2,] 0.14249246 0.10756887 0.07004983 0.03642428
## [3,] 0.08686089 0.11970655 0.09814918 0.06682058
##
## , , 2, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06302844 0.04783333 0.11176173 0.19291288
## [2,] 0.19558915 0.14765205 0.09615236 0.04999698
## [3,] 0.11922770 0.16431257 0.13472231 0.09171980
##
## , , 3, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1587382 0.1204690 0.2814738 0.4858543
## [2,] 0.4925945 0.3718641 0.2421613 0.1259182
## [3,] 0.3002769 0.4138239 0.3393004 0.2309978
##
## , , 1, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09555958 0.07252176 0.1694458 0.29248185
## [2,] 0.29653943 0.22386035 0.1457799 0.07580215
## [3,] 0.18076521 0.24911994 0.2042571 0.13905955
##
## , , 2, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1268144 0.09624152 0.2248666 0.3881442
## [2,] 0.3935289 0.29707859 0.1934603 0.1005948
## [3,] 0.2398883 0.33059986 0.2710637 0.1845419
##
## , , 3, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2224785 0.1688426 0.3944978 0.6809461
## [2,] 0.6903928 0.5211839 0.3393997 0.1764799
## [3,] 0.4208513 0.5799924 0.4755443 0.3237536
##
## , , 1, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2333270 0.1770757 0.4137343 0.7141503
## [2,] 0.7240577 0.5465978 0.3559495 0.1850854
## [3,] 0.4413728 0.6082739 0.4987328 0.3395405
##
## , , 2, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.004515004 0.003426512 0.008005984 0.013819197
## [2,] 0.014010910 0.010576965 0.006887816 0.003581504
## [3,] 0.008540804 0.011770431 0.009650751 0.006570293
##
## , , 3, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2167213 0.1644734 0.3842893 0.6633249
## [2,] 0.6725272 0.5076970 0.3306169 0.1719131
## [3,] 0.4099607 0.5649837 0.4632385 0.3153757
##
## , , 1, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1409473 0.1069672 0.2499271 0.4314013
## [2,] 0.4373861 0.3301868 0.2150206 0.1118057
## [3,] 0.2666228 0.3674438 0.3012727 0.2051083
##
## , , 2, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2118627 0.1607861 0.3756740 0.6484541
## [2,] 0.6574501 0.4963151 0.3232049 0.1680590
## [3,] 0.4007700 0.5523175 0.4528533 0.3083054
##
## , , 3, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0003434574 0.0002606555 0.0006090170 0.0010512295
## [2,] 0.0010658131 0.0008045921 0.0005239577 0.0002724458
## [3,] 0.0006497009 0.0008953794 0.0007341349 0.0004998037
##
## , , 1, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1966275 0.1492239 0.3486589 0.6018231
## [2,] 0.6101722 0.4606246 0.2999630 0.1559737
## [3,] 0.3719502 0.5125998 0.4202882 0.2861349
##
## , , 2, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01528281 0.01159838 0.02709942 0.04677653
## [2,] 0.04742546 0.03580192 0.02331454 0.01212301
## [3,] 0.02890973 0.03984168 0.03266678 0.02223975
##
## , , 3, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2177418 0.1652479 0.3860988 0.6664485
## [2,] 0.6756941 0.5100877 0.3321738 0.1727226
## [3,] 0.4118912 0.5676441 0.4654198 0.3168608
##
## , , 1, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.005422197 0.004114996 0.009614615 0.016595868
## [2,] 0.016826102 0.012702179 0.008271775 0.004301130
## [3,] 0.010256895 0.014135447 0.011589863 0.007890452
##
## , , 2, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1355303 0.1028562 0.2403216 0.4148212
## [2,] 0.4205760 0.3174967 0.2067568 0.1075087
## [3,] 0.2563757 0.3533219 0.2896939 0.1972254
##
## , , 3, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05784212 0.04389735 0.10256538 0.17703898
## [2,] 0.17949503 0.13550245 0.08824043 0.04588297
## [3,] 0.10941701 0.15079206 0.12363664 0.08417261
##
## , , 1, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2031213 0.1541522 0.3601738 0.6216991
## [2,] 0.6303239 0.4758373 0.3098696 0.1611250
## [3,] 0.3842343 0.5295291 0.4341687 0.2955848
##
## , , 2, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1144737 0.08687599 0.2029842 0.35037281
## [2,] 0.3552335 0.26816905 0.1746341 0.09080567
## [3,] 0.2165441 0.29842827 0.2446858 0.16658362
##
## , , 3, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1154897 0.08764703 0.2047857 0.35348240
## [2,] 0.3583862 0.27054907 0.1761840 0.09161158
## [3,] 0.2184659 0.30107685 0.2468574 0.16806206
##
## , , 1, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1049823 0.07967282 0.1861541 0.32132224
## [2,] 0.3257799 0.24593426 0.1601546 0.08327667
## [3,] 0.1985897 0.27368460 0.2243981 0.15277162
##
## , , 2, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1601673 0.1215537 0.2840080 0.4902286
## [2,] 0.4970296 0.3752122 0.2443416 0.1270519
## [3,] 0.3029805 0.4175498 0.3423553 0.2330776
##
## , , 3, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1237736 0.09393386 0.2194748 0.37883735
## [2,] 0.3840929 0.28995530 0.1888215 0.09818279
## [3,] 0.2341363 0.32267281 0.2645642 0.18011700
##
## , , 1, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1815336 0.1377689 0.3218946 0.5556250
## [2,] 0.5633331 0.4252654 0.2769367 0.1440006
## [3,] 0.3433979 0.4732508 0.3880253 0.2641701
##
## , , 2, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1844844 0.1400083 0.3271269 0.5646566
## [2,] 0.5724900 0.4321780 0.2814383 0.1463413
## [3,] 0.3489798 0.4809434 0.3943326 0.2684641
##
## , , 3, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2306107 0.1750143 0.4089178 0.7058365
## [2,] 0.7156285 0.5402345 0.3518057 0.1829307
## [3,] 0.4362345 0.6011926 0.4929268 0.3355877
##
## , , 1, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07621584 0.05784147 0.1351456 0.23327593
## [2,] 0.23651216 0.17854520 0.1162703 0.06045782
## [3,] 0.14417364 0.19869160 0.1629102 0.11091029
##
## , , 2, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1161343 0.08813625 0.2059288 0.35545545
## [2,] 0.3603867 0.27205921 0.1771674 0.09212293
## [3,] 0.2196854 0.30275739 0.2482353 0.16900015
##
## , , 3, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01984344 0.01505952 0.03518630 0.06073537
## [2,] 0.06157795 0.04648576 0.03027195 0.01574071
## [3,] 0.03753683 0.05173105 0.04241505 0.02887644
##
## , , 1, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03859028 0.02928681 0.06842812 0.11811435
## [2,] 0.11975294 0.09040260 0.05887100 0.03061154
## [3,] 0.07299928 0.10060330 0.08248614 0.05615709
##
## , , 2, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2391910 0.1815260 0.4241324 0.7320985
## [2,] 0.7422548 0.5603350 0.3648953 0.1897370
## [3,] 0.4524655 0.6235612 0.5112671 0.3480739
##
## , , 3, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06653928 0.05049777 0.1179871 0.20365862
## [2,] 0.20648396 0.15587664 0.1015083 0.05278194
## [3,] 0.12586898 0.17346520 0.1422267 0.09682883
##
## , , 1, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1084550 0.08230827 0.1923118 0.33195109
## [2,] 0.3365562 0.25406940 0.1654523 0.08603134
## [3,] 0.2051587 0.28273767 0.2318208 0.15782508
##
## , , 2, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08723804 0.0662064 0.1546901 0.26701187
## [2,] 0.27071612 0.2043661 0.1330851 0.06920113
## [3,] 0.16502377 0.2274260 0.1864700 0.12694993
##
## , , 3, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02684042 0.02036964 0.04759330 0.08215120
## [2,] 0.08329088 0.06287705 0.04094611 0.02129102
## [3,] 0.05077265 0.06997187 0.05737098 0.03905853
##
## , , 1, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.006004211 0.004556696 0.01064664 0.018377255
## [2,] 0.018632201 0.014065620 0.00915966 0.004762810
## [3,] 0.011357861 0.015652734 0.01283391 0.008737406
##
## , , 2, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2488000 0.1888184 0.4411710 0.7615089
## [2,] 0.7720733 0.5828452 0.3795541 0.1973593
## [3,] 0.4706423 0.6486114 0.5318061 0.3620570
##
## , , 3, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1332880 0.1011545 0.2363457 0.4079584
## [2,] 0.4136180 0.3122440 0.2033361 0.1057300
## [3,] 0.2521342 0.3474765 0.2849011 0.1939625
##
## , , 1, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1749036 0.1327373 0.3101383 0.5353324
## [2,] 0.5427590 0.4097338 0.2668224 0.1387414
## [3,] 0.3308563 0.4559667 0.3738538 0.2545221
##
## , , 2, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08942964 0.06786964 0.1585762 0.2737198
## [2,] 0.27751708 0.20950019 0.1364284 0.0709396
## [3,] 0.16916952 0.23313944 0.1911545 0.1301392
##
## , , 3, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1428806 0.1084345 0.2533553 0.4373187
## [2,] 0.4433856 0.3347159 0.2179700 0.1133393
## [3,] 0.2702800 0.3724840 0.3054052 0.2079218
DelayedTensor::einsum('ij,klm->ijklm', darrC, darrE)
## <3 x 4 x 3 x 4 x 5> HDF5Array object of type "double":
## ,,1,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.04008335 0.03041992 0.07107561 0.12268421
## [2,] 0.12438620 0.09390029 0.06114873 0.03179591
## [3,] 0.07582364 0.10449566 0.08567754 0.05832981
##
## ,,2,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.03885794 0.02948994 0.06890272 0.11893357
## [2,] 0.12058353 0.09102962 0.05927932 0.03082386
## [3,] 0.07350559 0.10130107 0.08305825 0.05654658
##
## ,,3,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.09606154 0.07290270 0.17033588 0.29401821
## [2,] 0.29809711 0.22503625 0.14654566 0.07620032
## [3,] 0.18171475 0.25042853 0.20533007 0.13979001
##
## ...
##
## ,,1,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.1749036 0.1327373 0.3101383 0.5353324
## [2,] 0.5427590 0.4097338 0.2668224 0.1387414
## [3,] 0.3308563 0.4559667 0.3738538 0.2545221
##
## ,,2,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.08942964 0.06786964 0.15857623 0.27371977
## [2,] 0.27751708 0.20950019 0.13642844 0.07093960
## [3,] 0.16916952 0.23313944 0.19115448 0.13013918
##
## ,,3,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.1428806 0.1084345 0.2533553 0.4373187
## [2,] 0.4433856 0.3347159 0.2179700 0.1133393
## [3,] 0.2702800 0.3724840 0.3054052 0.2079218
If there is a vanishing subscript on the left or right side of ->, the summation is done for that subscript.
einsum::einsum('i->', arrA)
## [1] 1.152015
DelayedTensor::einsum('i->', darrA)
## <1> HDF5Array object of type "double":
## [1]
## 1.152015
einsum::einsum('ij->', arrC)
## [1] 5.788768
DelayedTensor::einsum('ij->', darrC)
## <1> HDF5Array object of type "double":
## [1]
## 5.788768
einsum::einsum('ijk->', arrE)
## [1] 28.42526
DelayedTensor::einsum('ijk->', darrE)
## <1> HDF5Array object of type "double":
## [1]
## 28.42526
einsum::einsum('ij->i', arrC)
## [1] 1.700069 2.002226 2.086473
DelayedTensor::einsum('ij->i', darrC)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 1.700069 2.002226 2.086473
einsum::einsum('ij->j', arrC)
## [1] 1.545865 1.472029 1.401816 1.369058
DelayedTensor::einsum('ij->j', darrC)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 1.545865 1.472029 1.401816 1.369058
einsum::einsum('ijk->i', arrE)
## [1] 9.277716 9.633054 9.514487
DelayedTensor::einsum('ijk->i', darrE)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 9.277716 9.633054 9.514487
einsum::einsum('ijk->j', arrE)
## [1] 6.686290 7.011266 9.032754 5.694947
DelayedTensor::einsum('ijk->j', darrE)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 6.686290 7.011266 9.032754 5.694947
einsum::einsum('ijk->k', arrE)
## [1] 6.163944 5.085131 5.569418 6.324332 5.282434
DelayedTensor::einsum('ijk->k', darrE)
## <5> HDF5Array object of type "double":
## [1] [2] [3] [4] [5]
## 6.163944 5.085131 5.569418 6.324332 5.282434
These are the same as what the modeSum
function does.
einsum::einsum('ijk->ij', arrE)
## [,1] [,2] [,3] [,4]
## [1,] 2.568285 2.425773 2.544684 1.738975
## [2,] 1.976559 2.916338 2.768183 1.971975
## [3,] 2.141447 1.669156 3.719887 1.983997
DelayedTensor::einsum('ijk->ij', darrE)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 2.568285 2.425773 2.544684 1.738975
## [2,] 1.976559 2.916338 2.768183 1.971975
## [3,] 2.141447 1.669156 3.719887 1.983997
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.678658 1.230079 1.762789 1.6794951 1.3352693
## [2,] 2.178680 1.091844 1.369523 1.5082379 0.8629808
## [3,] 2.509763 1.038077 1.666184 2.3137161 1.5050150
## [4,] 0.796843 1.725130 0.770922 0.8228831 1.5791686
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.6786580 1.2300792 1.7627888 1.6794951 1.3352693
## [2,] 2.1786797 1.0918445 1.3695232 1.5082379 0.8629808
## [3,] 2.5097630 1.0380766 1.6661837 2.3137161 1.5050150
## [4,] 0.7968430 1.7251302 0.7709220 0.8228831 1.5791686
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.678658 1.230079 1.762789 1.6794951 1.3352693
## [2,] 2.178680 1.091844 1.369523 1.5082379 0.8629808
## [3,] 2.509763 1.038077 1.666184 2.3137161 1.5050150
## [4,] 0.796843 1.725130 0.770922 0.8228831 1.5791686
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.6786580 1.2300792 1.7627888 1.6794951 1.3352693
## [2,] 2.1786797 1.0918445 1.3695232 1.5082379 0.8629808
## [3,] 2.5097630 1.0380766 1.6661837 2.3137161 1.5050150
## [4,] 0.7968430 1.7251302 0.7709220 0.8228831 1.5791686
If we take the diagonal elements of a matrix
and add them together, we get trace
.
einsum::einsum('ii->', arrB)
## [1] 1.043805
DelayedTensor::einsum('ii->', darrB)
## <1> HDF5Array object of type "double":
## [1]
## 1.043805
By changing the order of the indices on the left and right side of ->, we can get a sorted array or DelayedArray.
einsum::einsum('ij->ji', arrB)
## [,1] [,2] [,3]
## [1,] 0.06069284 0.98948161 0.7708404
## [2,] 0.17783959 0.25288415 0.5908817
## [3,] 0.20251859 0.08485453 0.7302277
DelayedTensor::einsum('ij->ji', darrB)
## <3 x 3> DelayedArray object of type "double":
## [,1] [,2] [,3]
## [1,] 0.06069284 0.98948161 0.77084041
## [2,] 0.17783959 0.25288415 0.59088169
## [3,] 0.20251859 0.08485453 0.73022772
einsum::einsum('ijk->jki', arrD)
## , , 1
##
## [,1] [,2] [,3]
## [1,] 0.1765367 0.06597283 0.6711562
## [2,] 0.5326844 0.08002499 0.3185304
## [3,] 0.4872799 0.59672932 0.4961316
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] 0.3789242 0.2098766 0.005088257
## [2,] 0.6009557 0.5950856 0.168318268
## [3,] 0.8518405 0.3183856 0.568113783
##
## , , 3
##
## [,1] [,2] [,3]
## [1,] 0.9315400 0.05153787 0.2757881
## [2,] 0.4073338 0.43189277 0.2425296
## [3,] 0.8628276 0.53065500 0.8940914
DelayedTensor::einsum('ijk->jki', darrD)
## <3 x 3 x 3> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3]
## [1,] 0.17653666 0.06597283 0.67115619
## [2,] 0.53268435 0.08002499 0.31853043
## [3,] 0.48727988 0.59672932 0.49613161
##
## ,,2
## [,1] [,2] [,3]
## [1,] 0.378924191 0.209876608 0.005088257
## [2,] 0.600955720 0.595085575 0.168318268
## [3,] 0.851840539 0.318385611 0.568113783
##
## ,,3
## [,1] [,2] [,3]
## [1,] 0.93154000 0.05153787 0.27578810
## [2,] 0.40733377 0.43189277 0.24252956
## [3,] 0.86282763 0.53065500 0.89409142
Some examples of combining Multiplication and Summation are shown below.
Inner Product first calculate Hadamard Product and collapses it to 0D tensor (norm).
einsum::einsum('i,i->', arrA, arrA)
## [1] 0.4821826
DelayedTensor::einsum('i,i->', darrA, darrA)
## <1> HDF5Array object of type "double":
## [1]
## 0.4821826
einsum::einsum('ij,ij->', arrC, arrC)
## [1] 3.273109
DelayedTensor::einsum('ij,ij->', darrC, darrC)
## <1> HDF5Array object of type "double":
## [1]
## 3.273109
einsum::einsum('ijk,ijk->', arrE, arrE)
## [1] 18.04679
DelayedTensor::einsum('ijk,ijk->', darrE, darrE)
## <1> HDF5Array object of type "double":
## [1]
## 18.04679
The inner product is an operation that eliminates all subscripts, while the outer product is an operation that leaves all subscripts intact. In the middle of the two, the operation that eliminates some subscripts while keeping others by summing them is called contracted product.
einsum::einsum('ijk,ijk->jk', arrE, arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.1856449 0.5660228 1.5253806 1.0181291 0.9493817
## [2,] 1.5956139 0.4013699 0.9737904 0.7819366 0.3021791
## [3,] 2.1041451 0.4703950 1.2979562 1.8072106 1.1986363
## [4,] 0.2350023 1.1235481 0.3269961 0.2961099 0.8873438
DelayedTensor::einsum('ijk,ijk->jk', darrE, darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.1856449 0.5660228 1.5253806 1.0181291 0.9493817
## [2,] 1.5956139 0.4013699 0.9737904 0.7819366 0.3021791
## [3,] 2.1041451 0.4703950 1.2979562 1.8072106 1.1986363
## [4,] 0.2350023 1.1235481 0.3269961 0.2961099 0.8873438
Matrix Multiplication is considered a contracted product.
einsum::einsum('ij,jk->ik', arrC, t(arrC))
## [,1] [,2] [,3]
## [1,] 0.9367951 0.6658818 0.805539
## [2,] 0.6658818 1.2018407 1.090013
## [3,] 0.8055390 1.0900128 1.134473
DelayedTensor::einsum('ij,jk->ik', darrC, t(darrC))
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.9367951 0.6658818 0.8055390
## [2,] 0.6658818 1.2018407 1.0900128
## [3,] 0.8055390 1.0900128 1.1344730
Some examples of combining Multiplication and Permutation are shown below.
einsum::einsum('ij,ij->ji', arrC, arrC)
## [,1] [,2] [,3]
## [1,] 0.06649487 0.64033113 0.2379411
## [2,] 0.03829802 0.36491696 0.4519149
## [3,] 0.20907465 0.15475155 0.3038045
## [4,] 0.62292755 0.04184106 0.1408125
DelayedTensor::einsum('ij,ij->ji', darrC, darrC)
## <4 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.06649487 0.64033113 0.23794107
## [2,] 0.03829802 0.36491696 0.45191493
## [3,] 0.20907465 0.15475155 0.30380447
## [4,] 0.62292755 0.04184106 0.14081255
einsum::einsum('ijk,ijk->jki', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.02416239 0.32564197 0.8187318719 0.62047304 0.0223958620
## [2,] 0.40443263 0.17266116 0.2987619342 0.16574637 0.1768930086
## [3,] 0.76882785 0.03170875 0.5814337274 0.49559393 0.0005421553
## [4,] 0.13952609 0.13732838 0.0004421427 0.08735793 0.4600547083
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.02270761 0.19084119 0.0003065689 0.1970712 0.8604021
## [2,] 0.63296865 0.11540329 0.6750266777 0.3857979 0.1144521
## [3,] 0.61500646 0.05974271 0.0035125180 0.5118365 0.9309202
## [4,] 0.02478527 0.24185143 0.2762386296 0.2028303 0.1202748
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.13877490 0.04953964 7.063421e-01 0.200584809 0.06658372
## [2,] 0.55821258 0.11330543 1.774016e-06 0.230392344 0.01083404
## [3,] 0.72031076 0.37894355 7.130100e-01 0.799780170 0.26717398
## [4,] 0.07069093 0.74436832 5.031532e-02 0.005921693 0.30701426
DelayedTensor::einsum('ijk,ijk->jki', darrE, darrE)
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0241623857 0.3256419663 0.8187318719 0.6204730422 0.0223958620
## [2,] 0.4044326326 0.1726611625 0.2987619342 0.1657463680 0.1768930086
## [3,] 0.7688278523 0.0317087527 0.5814337274 0.4955939257 0.0005421553
## [4,] 0.1395260926 0.1373283779 0.0004421427 0.0873579269 0.4600547083
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0227076065 0.1908411917 0.0003065689 0.1970712368 0.8604020896
## [2,] 0.6329686477 0.1154032911 0.6750266777 0.3857978669 0.1144520582
## [3,] 0.6150064577 0.0597427068 0.0035125180 0.5118364824 0.9309201924
## [4,] 0.0247852720 0.2418514276 0.2762386296 0.2028302887 0.1202748459
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.387749e-01 4.953964e-02 7.063421e-01 2.005848e-01 6.658372e-02
## [2,] 5.582126e-01 1.133054e-01 1.774016e-06 2.303923e-01 1.083404e-02
## [3,] 7.203108e-01 3.789435e-01 7.130100e-01 7.997802e-01 2.671740e-01
## [4,] 7.069093e-02 7.443683e-01 5.031532e-02 5.921693e-03 3.070143e-01
Some examples of combining Summation and Permutation are shown below.
einsum::einsum('ijk->ki', arrE)
## [,1] [,2] [,3]
## [1,] 2.041753 1.887941 2.234250
## [2,] 1.534824 1.512771 2.037535
## [3,] 2.234974 1.423960 1.910484
## [4,] 2.194369 2.230848 1.899116
## [5,] 1.271797 2.577535 1.433102
DelayedTensor::einsum('ijk->ki', darrE)
## <5 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 2.041753 1.887941 2.234250
## [2,] 1.534824 1.512771 2.037535
## [3,] 2.234974 1.423960 1.910484
## [4,] 2.194369 2.230848 1.899116
## [5,] 1.271797 2.577535 1.433102
Finally, we will show a more complex example, combining Multiplication, Summation, and Permutation.
einsum::einsum('i,ij,ijk,ijk,ji->jki',
arrA, arrC, arrE, arrE, t(arrC))
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0004459674 0.006010405 1.511141e-02 0.011452129 4.133625e-04
## [2,] 0.0042992994 0.001835465 3.175973e-03 0.001761958 1.880452e-03
## [3,] 0.0446175435 0.001840161 3.374246e-02 0.028760903 3.146301e-05
## [4,] 0.0241250458 0.023745045 7.644959e-05 0.015104802 7.954670e-02
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.004804526 0.040378605 6.486453e-05 0.041696772 0.182045794
## [2,] 0.076322192 0.013915116 8.139347e-02 0.046518795 0.013800418
## [3,] 0.031447728 0.003054882 1.796090e-04 0.026172236 0.047601654
## [4,] 0.000342666 0.003343690 3.819106e-03 0.002804207 0.001662846
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.017963593 0.006412615 9.143183e-02 0.0259645212 0.008618870
## [2,] 0.137236357 0.027856099 4.361412e-07 0.0566418724 0.002663544
## [3,] 0.119049325 0.062629876 1.178427e-01 0.1321836285 0.044157166
## [4,] 0.005415243 0.057021955 3.854379e-03 0.0004536282 0.023518671
DelayedTensor::einsum('i,ij,ijk,ijk,ji->jki',
darrA, darrC, darrE, darrE, t(darrC))
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4.459674e-04 6.010405e-03 1.511141e-02 1.145213e-02 4.133625e-04
## [2,] 4.299299e-03 1.835465e-03 3.175973e-03 1.761958e-03 1.880452e-03
## [3,] 4.461754e-02 1.840161e-03 3.374246e-02 2.876090e-02 3.146301e-05
## [4,] 2.412505e-02 2.374505e-02 7.644959e-05 1.510480e-02 7.954670e-02
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4.804526e-03 4.037861e-02 6.486453e-05 4.169677e-02 1.820458e-01
## [2,] 7.632219e-02 1.391512e-02 8.139347e-02 4.651879e-02 1.380042e-02
## [3,] 3.144773e-02 3.054882e-03 1.796090e-04 2.617224e-02 4.760165e-02
## [4,] 3.426660e-04 3.343690e-03 3.819106e-03 2.804207e-03 1.662846e-03
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.796359e-02 6.412615e-03 9.143183e-02 2.596452e-02 8.618870e-03
## [2,] 1.372364e-01 2.785610e-02 4.361412e-07 5.664187e-02 2.663544e-03
## [3,] 1.190493e-01 6.262988e-02 1.178427e-01 1.321836e-01 4.415717e-02
## [4,] 5.415243e-03 5.702196e-02 3.854379e-03 4.536282e-04 2.351867e-02
einsum
By using einsum
and other DelayedTensor functions,
it is possible to implement your original tensor calculation functions.
It is intended to be applied to Delayed Arrays,
which can scale to large-scale data
since the calculation is performed internally by block processing.
For example, kronecker
can be easily implmented by eimsum
and other DelayedTensor functions4 https://stackoverflow.com/
questions/56067643/speeding-up-kronecker-products-numpy
(the kronecker
function inside DelayedTensor
has a more efficient implementation though).
darr1 <- DelayedArray(array(1:6, dim=c(2,3)))
darr2 <- DelayedArray(array(20:1, dim=c(4,5)))
mykronecker <- function(darr1, darr2){
stopifnot((length(dim(darr1)) == 2) && (length(dim(darr2)) == 2))
# Outer Product
tmpdarr <- DelayedTensor::einsum('ij,kl->ikjl', darr1, darr2)
# Reshape
DelayedTensor::unfold(tmpdarr, row_idx=c(2,1), col_idx=c(4,3))
}
identical(as.array(DelayedTensor::kronecker(darr1, darr2)),
as.array(mykronecker(darr1, darr2)))
## [1] TRUE
## R version 4.5.0 RC (2025-04-04 r88126)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] einsum_0.1.2 DelayedRandomArray_1.16.0
## [3] HDF5Array_1.36.0 h5mread_1.0.0
## [5] rhdf5_2.52.0 DelayedArray_0.34.0
## [7] SparseArray_1.8.0 S4Arrays_1.8.0
## [9] abind_1.4-8 IRanges_2.42.0
## [11] S4Vectors_0.46.0 MatrixGenerics_1.20.0
## [13] matrixStats_1.5.0 BiocGenerics_0.54.0
## [15] generics_0.1.3 Matrix_1.7-3
## [17] DelayedTensor_1.14.0 BiocStyle_2.36.0
##
## loaded via a namespace (and not attached):
## [1] dqrng_0.4.1 sass_0.4.10 lattice_0.22-7
## [4] digest_0.6.37 evaluate_1.0.3 grid_4.5.0
## [7] bookdown_0.43 fastmap_1.2.0 jsonlite_2.0.0
## [10] BiocManager_1.30.25 codetools_0.2-20 jquerylib_0.1.4
## [13] cli_3.6.4 rlang_1.1.6 crayon_1.5.3
## [16] XVector_0.48.0 cachem_1.1.0 yaml_2.3.10
## [19] tools_4.5.0 beachmat_2.24.0 parallel_4.5.0
## [22] BiocParallel_1.42.0 Rhdf5lib_1.30.0 rsvd_1.0.5
## [25] R6_2.6.1 lifecycle_1.0.4 BiocSingular_1.24.0
## [28] irlba_2.3.5.1 ScaledMatrix_1.16.0 rTensor_1.4.8
## [31] bslib_0.9.0 Rcpp_1.0.14 xfun_0.52
## [34] knitr_1.50 rhdf5filters_1.20.0 htmltools_0.5.8.1
## [37] rmarkdown_2.29 compiler_4.5.0