Package 'EpiCompare'

May 10, 2024

Type Package

Title Comparison, Benchmarking & QC of Epigenomic Datasets

Version 1.8.0

Description EpiCompare is used to compare and analyse epigenetic datasets for quality control and benchmarking purposes.

The package outputs an HTML report consisting of three sections:

- (1. General metrics) Metrics on peaks (percentage of blacklisted and non-standard peaks, and peak widths) and fragments (duplication rate) of samples,
- (2. Peak overlap) Percentage and statistical significance of overlapping and non-overlapping peaks. Also includes upset plot and
- (3. Functional annotation) functional annotation

(ChromHMM, ChIPseeker and enrichment analysis) of peaks.

Also includes peak enrichment around TSS.

License GPL-3

URL https://github.com/neurogenomics/EpiCompare

BugReports https://github.com/neurogenomics/EpiCompare/issues

Depends R (>= 4.2.0)

Imports AnnotationHub, BRGenomics, ChIPseeker, data.table, genomation, GenomicRanges, IRanges, GenomeInfoDb, ggplot2 (>= 3.5.0), htmltools, methods, plotly, reshape2, rmarkdown, rtracklayer, stats, stringr, utils, BiocGenerics, downloadthis, parallel

Suggests rworkflows, BiocFileCache, BiocParallel, BiocStyle,

clusterProfiler, GenomicAlignments, grDevices, knitr,

org.Hs.eg.db, testthat (\geq 3.0.0), tidyr,

TxDb.Hsapiens.UCSC.hg19.knownGene,

TxDb.Hsapiens.UCSC.hg38.knownGene,

TxDb.Mmusculus.UCSC.mm9.knownGene,

TxDb.Mmusculus.UCSC.mm10.knownGene,

BSgenome. Hsapiens. UCSC. hg19, BSgenome. Hsapiens. UCSC. hg38,

BSgenome.Mmusculus.UCSC.mm9, BSgenome.Mmusculus.UCSC.mm10,

ComplexUpset, plyranges, scales, Matrix, consensusSeekeR,

heatmaply, viridis

2 Contents

VignetteBuilder knitr
biocViews Epigenetics, Genetics, QualityControl, ChIPSeq, MultipleComparison, FunctionalGenomics, ATACSeq, DNaseSeq
Config/testthat/edition 3
Encoding UTF-8
LazyData FALSE
RoxygenNote 7.3.1
git_url https://git.bioconductor.org/packages/EpiCompare
git_branch RELEASE_3_19
git_last_commit e80fa05
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-10
Author Sera Choi [aut] (https://orcid.org/0000-0002-5077-1984), Brian Schilder [aut] (https://orcid.org/0000-0001-5949-2191), Leyla Abbasova [aut], Alan Murphy [aut] (https://orcid.org/0000-0002-2487-8753), Nathan Skene [aut] (https://orcid.org/0000-0002-6807-3180), Thomas Roberts [cre]
Maintainer Thomas Roberts <tomroberts.work15@gmail.com></tomroberts.work15@gmail.com>

Contents

s_interactive	4
pplapply	4
neckCache	6
neck_cell_lines	6
neck_genome_build	7
neck_grlist_cols	7
neck_list_names	8
neck_workers	8
ean_granges	9
nR_H3K27ac	9
nR_H3K27ac_picard	10
nT_H3K27ac	11
nT_H3K27ac_picard	11
ompute_consensus_peaks	12
ompute_corr	14
ownload_button	16
ncode_H3K27ac	17
piCompare	18
g_length	22
agment_info	22
ather files	23

Contents 3

gather_files_names	24
get_bpparam	25
get_chromHMM_annotation	26
group_files	27
hg19_blacklist	27
hg38_blacklist	28
is_granges	29
liftover_grlist	29
messager	30
message_parallel	31
mm10_blacklist	31
mm9_blacklist	32
overlap_heatmap	32
overlap_percent	33
overlap_stat_plot	34
overlap_upset_plot	35
peak_info	36
plot_ChIPseeker_annotation	37
plot_chromHMM	
plot_corr	
plot enrichment	41
plot_precision_recall	42
precision_recall	
precision_recall_matrix	45
predict_precision_recall	46
predict_values	47
prepare_blacklist	47
prepare_genome_builds	48
prepare_peaklist	49
prepare_reference	50
read bowtie	
read_peaks	51
rebin_peaks	
remove_nonstandard_chrom	
report command	
report_header	
save_output	55
set_min_max	55
stopper	56
tidy_peakfile	56
translate_genome	57
tansiate_genome	58
width_boxplot	59
write_example_peaks	60
write_commple_peaks	00
	61

Index

4 bpplapply

as_interactive	As interactive
ac_1	110 111101010111

Description

Convert a ggplot object to plotly, and enable it to be plotted within an Rmarkdown HTML file.

Usage

```
as_interactive(
  plt,
  to_widget = isTRUE(getOption("knitr.in.progress")),
  add_boxmode = FALSE
)
```

Arguments

plt ggplot object.

to_widget Convert to a widget so it works within Rmarkdown HTML files. By default, this

will be only be set to TRUE when being run within the context of knitr rendering.

add_boxmode Add extra layout to enable dodged boxplots.

Value

A plotly object or a tagList wrapping the plotly object.

Source

GitHub Issue to check whether knitting

Description

Wrapper function for bplapply that automatically handles issues with **BiocParallel** related to different OS platforms.

bpplapply 5

Usage

```
bpplapply(
    X,
    FUN,
    apply_fun = parallel::mclapply,
    workers = check_workers(),
    progressbar = workers > 1,
    verbose = workers == 1,
    use_snowparam = TRUE,
    register_now = FALSE,
    ...
)
```

Arguments

X Any object for which methods length, [, and [[are implemented.

FUN The function to be applied to each element of X.

apply_fun Iterator function to use.

workers Number of threads to parallelize across.

progressbar logical(1) Enable progress bar (based on plyr:::progress_text).

verbose Print messages.

use_snowparam Whether to use SnowParam (default: TRUE) or MulticoreParam (FALSE) when

parallelising across multiple workers.

register_now Register the cores now with register (TRUE), or simply return the BPPARAM object

(default: FALSE).

... Arguments passed on to BiocParallel::bplapply

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to **BiocParallel** func-

tions.

BPREDO A list of output from bplapply with one or more failed elements. When a list is given in BPREDO, bpok is used to identify errors, tasks are

rerun and inserted into the original results.

BPOPTIONS Additional options to control the behavior of the parallel evaluation, see bpoptions.

Value

(Named) list.

Examples

```
X <- stats::setNames(seq_len(length(letters)), letters)
out <- bpplapply(X, print)</pre>
```

6 check_cell_lines

checkCache

Check cache

Description

Quick function to check if object is already saved.

Usage

```
checkCache(cache = BiocFileCache::BiocFileCache(ask = FALSE), url)
```

Arguments

cache BiocFileCache.
url Path to cached file.

Value

path

check_cell_lines

Check cell lines

Description

Check whether a list of cell lines matches any of those that are made available through EpiCompare.

Usage

```
check_cell_lines(cell_lines = NULL, verbose = TRUE)
```

Arguments

cell_lines A character vector of cell line names. If NULL (default), will return names of all

cell lines.

verbose Print messages.

Value

Character vector, or NULL.

check_genome_build 7

check_genome_build (

Check genome build

Description

Check that the genome build is valid and require specific reference datasets to be installed.

Usage

```
check_genome_build(genome_build, type = "txdb")
```

Arguments

genome_build

Genome build name.

type

whether to fetch the txdb or bsgen reference data

Value

txdb or bsgen

check_grlist_cols

Check GRanges list columns

Description

Check that at least one of the required columns is in a list of GRanges objects. Elements that do not meet this criterion will be dropped from the list.

Usage

```
check_grlist_cols(grlist, target_cols)
```

Arguments

grlist

Named list of GRanges objects.

target_cols

A character vector of column names to search for.

Value

Named list of GRanges objects.

8 check_workers

check_list_names

Check peaklist is named

Description

This function checks whether the peaklist is named. If not, default file names are assigned.

Usage

```
check_list_names(peaklist, default_prefix = "sample")
```

Arguments

peaklist A list of peak files as GRanges object.

default_prefix Default prefix to use when creating names for peaklist.

Value

named peaklist

check_workers

Check workers

Description

Assign parallel worker cores.

Usage

```
check_workers(workers = NULL)
```

Arguments

workers

Number of cores to parallelise across (in applicable functions). If NULL, will set to the total number of available cores minus 1.

Value

Integer

Examples

```
workers <- check_workers()</pre>
```

clean_granges 9

clean_granges

Clean GRanges

Description

Remove columns from the metadata (GenomicRanges::mcols) that conflicts with GRanges conventions.

Usage

```
clean_granges(
   gr,
nono_cols = c("seqnames", "ranges", "strand", "seqlevels", "seqlengths", "isCircular",
        "start", "end", "width", "element")
)
```

Arguments

gr A GRanges object.

nono_cols Problematic columns to search for and remove (if present).

Value

Cleaned GRanges object.

CnR_H3K27ac

Example CUT&Run peak file

Description

Human H3K27ac peak file generated with CUT&Run using K562 cell-line from Meers et al., (2019). Human genome build hg19 was used. Raw peak file (.BED) was obtained from GEO (https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR8581604). Peak calling was performed by Leyla Abbasova using MACS2. The peak file was then processed into GRanges object. Peaks located on chromosome 1 were subsetted to reduce the dataset size.

Usage

```
data("CnR_H3K27ac")
```

Format

An object of class GRanges of length 2707.

Source

The code to prepare the .Rda file from the raw peak file is:

```
# sequences were directly downloaded from https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR8581604
# and peaks (BED file) were generated by Leyla Abbasova (Neurogenomics Lab, Imperial College
London)
CnR_H3K27ac <- ChIPseeker::readPeakFile("path", as = "GRanges")
CnR_H3K27ac <- CnR_H3K27ac[seqnames(CnR_H3K27ac)== "chr1"]
my_label <-c("name", "score", "strand", "signalValue", "pValue", "qValue", "peak")
colnames(GenomicRanges::mcols(CnR_H3K27ac)) <- my_label
usethis::use_data(CnR_H3K27ac, overwrite = TRUE)</pre>
```

CnR_H3K27ac_picard

Example Picard duplication metrics file 2

Description

Duplication metrics output on CUT&Run H3K27ac file (sample accession: SRR8581604). Raw sequences were aligned to hg19 genome and after, Picard was performed by Leyla Abbasova. The duplication summary output generated by Picard was processed to reduce the size of data.

Usage

```
data("CnR_H3K27ac_picard")
```

Format

An object of class data. frame with 1 rows and 10 columns.

Source

The code to prepare the .Rda file is:

```
picard <- read.table("path/to/picard/duplication/output",header = TRUE, fill = TRUE)
CnR_H3K27ac_picard <- picard[1,]
usethis::use_data(CnR_H3K27ac_picard, overwrite = TRUE)</pre>
```

CnT_H3K27ac 11

CnT_H3K27ac

Example CUT&Tag peak file

Description

Human H3K27ac peak file generated with CUT&Tag using K562 cell-line from Kaya-Okur et al., (2019). Human genome build hg19 was used. Raw peak file (.BED) was obtained from GEO (https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR8383507). Peak calling was performed by Leyla Abbasova using MACS2. The peak file was then imported as an GRanges object. Peaks located on chromosome 1 were subsetted to reduce the dataset size.

Usage

```
data("CnT_H3K27ac")
```

Format

An object of class GRanges of length 1670.

usethis::use_data(CnT_H3K27ac)

Source

The code to prepare the .Rda file from the raw peak file is:

colnames(GenomicRanges::mcols(CnT_H3K27ac)) <- my_label</pre>

```
# sequences were directly downloaded from https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR8383507
# and peaks (BED file) were generated by Leyla Abbasova (Neurogenomics Lab, Imperial College
London)
CnT_H3K27ac <- ChIPseeker::readPeakFile("path", as = "GRanges")
CnT_H3K27ac <- CnT_H3K27ac[seqnames(CnT_H3K27ac)== "chr1"]
my_label <-c("name", "score", "strand", "signalValue", "pValue", "qValue", "peak")</pre>
```

CnT_H3K27ac_picard

Example Picard duplication metrics file 1

Description

Duplication metrics output of CUT&Tag H3K27ac file (sample accession: SRR8581604). Raw sequences were aligned to hg19 genome and Picard was performed by Leyla Abbasova. The duplication summary output generated by Picard was processed to reduce the size of data.

Usage

```
data("CnT_H3K27ac_picard")
```

Format

An object of class data. frame with 1 rows and 10 columns.

Source

```
The code to prepare the .Rda file is:

picard <- read.table("path/to/picard/duplication/output",header = TRUE, fill = TRUE)]
CnT_H3K27ac_picard <- picard[1,]
usethis::use_data(CnT_H3K27ac_picard, overwrite = TRUE)
```

compute_consensus_peaks

Compute consensus peaks

Description

Compute consensus peaks from a list of GRanges.

Usage

```
compute_consensus_peaks(
  grlist,
  groups = NULL,
  genome_build,
  lower = 2,
  upper = Inf,
  min.gapwidth = 1L,
  method = c("granges", "consensusseeker"),
  ...
)
```

Arguments

grlist Named list of GRanges objects.

groups A character vector of the same length as grlist defining how to group GRanges

objects when computing consensus peaks.

genome_build Genome build name.

lower, upper The lower and upper bounds for the slice.

min.gapwidth Ranges separated by a gap of at least min.gapwidth positions are not merged.

method Method to call peaks with:

• "granges" : Simple overlap procedure using GRanges functions. Faster but less accurate.

• "consensusseeker": Uses findConsensusPeakRegions to compute consensus peaks. Slower but more accurate.

... Arguments passed on to consensusSeekeR::findConsensusPeakRegions

- narrowPeaks a GRanges containing called peak regions of signal enrichment based on pooled, normalized data for all analyzed experiments. All GRanges entries must have a metadata field called "name" which identifies the region to the called peak. All GRanges entries must also have a row name which identifies the experiment of origin. Each peaks entry must have an associated narrowPeaks entry. A GRanges entry is associated to a narrowPeaks entry by having a identical metadata "name" field and a identical row name.
- peaks a GRanges containing called peaks of signal enrichment based on pooled, normalized data for all analyzed experiments. All GRanges entries must have a metadata field called "name" which identifies the called peak. All GRanges entries must have a row name which identifies the experiment of origin. Each peaks entry must have an associated narrowPeaks entry. A GRanges entry is associated to a narrowPeaks entry by having a identical metadata "name" field and a identical row name.
- chrInfo a Seqinfo containing the name and the length of the chromosomes to analyze. Only the chomosomes contained in this Seqinfo will be analyzed.
- extendingSize a numeric value indicating the size of padding on both sides of the position of the peaks median to create the consensus region. The minimum size of the consensus region is equal to twice the value of the extendingSize parameter. The size of the extendingSize must be a positive integer. Default = 250.
- expandToFitPeakRegion a logical indicating if the region size, which is set by the extendingSize parameter is extended to include the entire narrow peak regions of all peaks included in the unextended consensus region. The narrow peak regions of the peaks added because of the extension are not considered for the extension. Default: FALSE.
- shrinkToFitPeakRegion a logical indicating if the region size, which is set by the extendingSize parameter is shrinked to fit the narrow peak regions of the peaks when all those regions are smaller than the consensus region. Default: FALSE.
- minNbrExp a positive numeric or a positive integer indicating the minimum number of experiments in which at least one peak must be present for a potential consensus region. The numeric must be a positive integer inferior or equal to the number of experiments present in the narrowPeaks and peaks parameters. Default = 1.
- nbrThreads a numeric or a integer indicating the number of threads to use in parallel. The nbrThreads must be a positive integer. Default = 1.

Details

NOTE: If you get the error "Error in serialize(data, node\$con): error writing to connection", try running closeAllConnections and rerun compute_consensus_peaks. This error can sometimes occur when compute_consensus_peaks has been disrupted partway through.

Value

Named list of consensus peak GRanges.

14 compute_corr

Source

GenomicRanges tutorial consensusSeekeR

Examples

compute_corr

Compute correlation matrix

Description

Compute correlation matrix on all peak files.

Usage

```
compute_corr(
  peakfiles,
  reference = NULL,
  genome_build,
  keep_chr = NULL,
  drop_empty_chr = FALSE,
  bin_size = 5000,
  method = "spearman",
  intensity_cols = c("total_signal", "qValue", "Peak Score", "score"),
  return_bins = FALSE,
  fill_diag = NA,
  workers = check_workers(),
  save_path = tempfile(fileext = ".corr.csv.gz")
)
```

Arguments

peakfiles

A list of peak files as GRanges object and/or as paths to BED files. If paths are provided, EpiCompare imports the file as GRanges object. EpiCompare also accepts a list containing a mix of GRanges objects and paths. Files must be listed and named using list(). E.g. list("name1"=file1, "name2"=file2). If no names are specified, default file names will be assigned.

15 compute_corr

reference

A named list containing reference peak file(s) as GRanges object. Please ensure that the reference file is listed and named i.e. list("reference_name" = reference_peak). If more than one reference is specified, individual reports for each reference will be generated. However, please note that specifying more than one reference can take awhile. If a reference is specified, it enables two analyses: (1) plot showing statistical significance of overlapping/nonoverlapping peaks; and (2) ChromHMM of overlapping/non-overlapping peaks.

genome_build

The build of **all** peak and reference files to calculate the correlation matrix on. If all peak and reference files are not of the same build use liftover grlist to convert them all before running. Genome build should be one of hg19, hg38, mm9, mm10.

keep_chr

Which chromosomes to keep.

drop_empty_chr Drop chromosomes that are not present in any of the peakfiles (default: FALSE).

bin_size

Default of 100. Base-pair size of the bins created to measure correlation. Use smaller value for higher resolution but longer run time and larger memory usage.

method

Default spearman (i.e. non-parametric). A character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson", "kendall", or "spearman": can be abbreviated.

intensity_cols Depending on which columns are present, this value will be used to get quantiles and ultimately calculate the correlations:

- "total_signal": Used by the peak calling software SEACR. NOTE: Another SEACR column (e.g. "max_signal") can be used together or instead of "total_signal".
- "qValue"Used by the peak calling software MACS2/3. Should contain the negative log of the p-values after multiple testing correction.
- "Peak Score": Used by the peak calling software HOMER.

return_bins

If TRUE, returns a named list with both the rebinned (standardised) peaks ("bin") and the correlation matrix ("cor"). If FALSE (default), returns only the correlation matrix (unlisted).

fill_diag

Fill the diagonal of the overlap matrix.

workers

Number of threads to parallelize across.

save_path

Path to save a table of correlation results to.

Value

correlation matrix

Examples

```
data("CnR_H3K27ac")
data("CnT_H3K27ac")
data("encode_H3K27ac")
peakfiles <- list(CnR_H3K27ac=CnR_H3K27ac, CnT_H3K27ac=CnT_H3K27ac)</pre>
reference <- list("encode_H3K27ac"=encode_H3K27ac)</pre>
```

#increasing bin_size for speed but lower values will give more granular corr

16 download_button

download_button

Download local file

Description

Save an object as RDS and create a download button that can be rendered to Rmarkdown HTML pages. Uses the package **downloadthis**.

Usage

```
download_button(
  object,
  save_output = FALSE,
  outfile_dir = NULL,
  filename = NULL,
  button_label = paste0("Download: ", "<code>", filename, "</code>"),
  output_extension = ".rds",
  icon = "fa fa-save",
  button_type = "success",
  self_contained = TRUE,
  add_download_button = TRUE,
  verbose = TRUE
)
```

Arguments

object R object to serialize.

save_output Default FALSE. If TRUE, all outputs (tables and plots) of the analysis will be

saved in a folder (EpiCompare_file).

outfile_dir Directory to save the file to.
filename Name of the file to save.

button_label Character (HTML), button label

output_extension

Extension of the output file. Currently, .csv, .xlsx, and .rds are supported. If

a (named) list is passed to the function, only .xlsx and .rds are supported.

icon Fontawesome tag e.g.: "fa fa-save"

button_type Character, one of the standard Bootstrap types

self_contained A boolean to specify whether your HTML output is self-contained. Default to

FALSE.

add_download_button

Add download buttons for each plot or dataset.

verbose Print messages.

encode_H3K27ac

Value

Download button as HTML text.

Source

```
csv2 Issue.
Plotly Issue
```

Examples

```
button <- download_button(object=mtcars)</pre>
```

encode_H3K27ac

Example ChIP-seq peak file

Description

Human H3K27ac peak file generated with ChIP-seq using K562 cell-line. Human genome build hg19 was used. The peak file (.BED) was obtained from ENCODE project (https://www.encodeproject.org/files/ENCFF044JNJ/). The BED file was then imported as an GRanges object. Peaks located on chromosome 1 were subsetted to reduce the dataset size.

Usage

```
data("encode_H3K27ac")
```

Format

An object of class GRanges of length 5142.

Source

The code to prepare the .Rda file from the raw peak file is:

```
# dataset was directly downloaded from
# https://www.encodeproject.org/files/ENCFF044JNJ/encode_H3K27ac <- ChIPseeker::readPeakFile("path",
as = "GRanges")
encode_H3K27ac <-encode_H3K27ac[seqnames(encode_H3K27ac) == "chr1"]
my_label <- c("name", "score", "strand", "signalValue", "pValue", "qValue", "peak")
colnames(GenomicRanges::mcols(encode_H3K27ac)) <- my_label
usethis::use_data(encode_H3K27ac, overwrite = TRUE)</pre>
```

EpiCompare

Compare epigenomic datasets

Description

This function compares and analyses multiple epigenomic datasets and outputs an HTML report containing all results of the analysis. The report is mainly divided into three sections: (1) General Metrics on Peakfiles, (2) Peak Overlaps and (3) Functional Annotation of Peaks.

Usage

```
EpiCompare(
  peakfiles,
  genome_build,
  genome_build_output = "hg19",
  blacklist = NULL,
  picard_files = NULL,
  reference = NULL,
  upset_plot = FALSE,
  stat_plot = FALSE,
  chromHMM_plot = FALSE,
  chromHMM_annotation = "K562",
  chipseeker_plot = FALSE,
  enrichment_plot = FALSE,
  tss_plot = FALSE,
  tss_distance = c(-3000, 3000),
  precision_recall_plot = FALSE,
  n_{threshold} = 20,
  corr_plot = FALSE,
  bin_size = 5000,
  interact = TRUE,
  add_download_button = FALSE,
  save_output = FALSE,
  output_filename = "EpiCompare",
  output_timestamp = FALSE,
  output_dir,
  display = NULL,
  run_all = FALSE,
  workers = 1,
  quiet = FALSE,
  error = FALSE,
  debug = FALSE
)
```

Arguments

peakfiles

A list of peak files as GRanges object and/or as paths to BED files. If paths are provided, EpiCompare imports the file as GRanges object. EpiCompare also

accepts a list containing a mix of GRanges objects and paths. Files must be listed and named using list(). E.g. list("name1"=file1, "name2"=file2). If no names are specified, default file names will be assigned.

genome_build

A named list indicating the human genome build used to generate each of the following inputs:

- "peakfiles": Genome build for the peakfiles input. Assumes genome build is the same for each element in the peakfiles list.
- "reference": Genome build for the reference input.
- "blacklist": Genome build for the blacklist input.

Example input list:

genome_build = list(peakfiles="hg38", reference="hg19", blacklist="hg19")

Alternatively, you can supply a single character string instead of a list. This should *only* be done in situations where all three inputs (peakfiles, reference, blacklist) are of the same genome build. For example: genome_build = "hg19"

genome_build_output

Genome build to standardise all inputs to. Liftovers will be performed automatically as needed. Default: "hg19".

blacklist

A GRanges object containing blacklisted genomic regions. Blacklists included in **EpiCompare** are:

- NULL (default): Automatically selects the appropriate blacklist based on the genome_build_output argument.
- "hg19_blacklist": Regions of hg19 genome that have anomalous and/or unstructured signals. hg19_blacklist
- "hg38_blacklist": Regions of hg38 genome that have anomalous and/or unstructured signals. hg38_blacklist
- "mm10_blacklist": Regions of mm10 genome that have anomalous and/or unstructured signals. mm10_blacklist
- "mm9_blacklist": Blacklisted regions of mm10 genome that have been lifted over from mm10 blacklist. mm9 blacklist
- <user_input>: A custom user-provided blacklist in GRanges format.

picard_files

A list of summary metrics output from Picard. Files must be in data.frame format and listed using list() and named using names(). To import Picard duplication metrics (.txt file) into R as data frame, use:

picard <- read.table("/path/to/picard/output", header = TRUE, fill =
TRUE).</pre>

reference

A named list containing reference peak file(s) as GRanges object. Please ensure that the reference file is listed and named i.e. list("reference_name" = reference_peak). If more than one reference is specified, individual reports for each reference will be generated. However, please note that specifying more than one reference can take awhile. If a reference is specified, it enables two analyses: (1) plot showing statistical significance of overlapping/non-overlapping peaks; and (2) ChromHMM of overlapping/non-overlapping peaks.

upset_plot

Default FALSE. If TRUE, the report includes upset plot of overlapping peaks.

stat_plot Default FALSE. If TRUE, the function creates a plot showing the statistical

significance of overlapping/non-overlapping peaks. Reference peak file must be

provided.

chromHMM_plot Default FALSE. If TRUE, the function outputs ChromHMM heatmap of indi-

vidual peak files. If a reference peak file is provided, ChromHMM annotation of overlapping and non-overlapping peaks is also provided.

chromHMM_annotation

ChromHMM annotation for ChromHMM plots. Default K562 cell-line. Cell-line options are:

- "K562" = K-562 cells
- "Gm12878" = Cellosaurus cell-line GM12878
- "H1hesc" = H1 Human Embryonic Stem Cell
- "Hepg2" = Hep G2 cell
- "Hmec" = Human Mammary Epithelial Cell
- "Hsmm" = Human Skeletal Muscle Myoblasts
- "Huvec" = Human Umbilical Vein Endothelial Cells
- "Nhek" = Normal Human Epidermal Keratinocytes
- "Nhlf" = Normal Human Lung Fibroblasts

chipseeker_plot

Default FALSE. If TRUE, the report includes a barplot of ChIPseeker annotation of peak files.

enrichment_plot

Default FALSE. If TRUE, the report includes dotplots of KEGG and GO enrichment and him for all files

ment analysis of peak files.

tss_plot Default FALSE. If TRUE, the report includes peak count frequency around tran-

scriptional start site. Note that this can take awhile.

tss_distance A vector specifying the distance upstream and downstream around transcription

start sites (TSS). The default value is c(-3000, 3000); meaning peak frequency

3000bp upstream and downstream of TSS will be displayed.

precision_recall_plot

Default is FALSE. If TRUE, creates a precision-recall curve plot and an F1 plot

using plot_precision_recall.

n_threshold Number of thresholds to test.

corr_plot Default is FALSE. If TRUE, creates a correlation plot across all peak files using

plot_corr.

bin_size Default of 100. Base-pair size of the bins created to measure correlation. Use

smaller value for higher resolution but longer run time and larger memory usage.

interact Default TRUE. By default, plots are interactive. If set FALSE, all plots in the

report will be static.

add_download_button

Add download buttons for each plot or dataset.

save_output Default FALSE. If TRUE, all outputs (tables and plots) of the analysis will be

saved in a folder (EpiCompare_file).

output_filename

Default EpiCompare.html. If otherwise, the html report will be saved in the specified name.

output_timestamp

Default FALSE. If TRUE, date will be included in the file name.

output_dir

Path to where output HTML file should be saved.

display

After completion, automatically display the HTML report file in one of the following ways:

- "browser": Display the report in your default web browser.
- "rsstudio": Display the report in Rstudio.
- NULL (default): Do not display the report.

run_all Convenience argument that enables all plots/features (without specifying each

argument manually) by overriding the default values. Default: FALSE.

workers Number of threads to parallelize across.

quiet An option to suppress printing during rendering from knitr, pandoc command

line and others. To only suppress printing of the last "Output created: " message,

you can set rmarkdown.render.message to FALSE

error If TRUE, the Rmarkdown report will continue to render even when some chunks

encounter errors (default: FALSE). Passed to opts_chunk.

debug Run in debug mode, where are messages and warnings are printed within the

HTML report (default: FALSE).

Value

Path to one or more HTML report files.

Examples

```
### Load Data ###
data("encode_H3K27ac") # example dataset as GRanges object
data("CnT_H3K27ac") # example dataset as GRanges object
data("CnR_H3K27ac") # example dataset as GRanges object
data("CnT_H3K27ac_picard") # example Picard summary output
data("CnR_H3K27ac_picard") # example Picard summary output
#### Prepare Input ####
# create named list of peakfiles
peakfiles <- list(CnR=CnR_H3K27ac, CnT=CnT_H3K27ac)</pre>
# create named list of picard outputs
picard_files <- list(CnR=CnR_H3K27ac_picard, CnT=CnT_H3K27ac_picard)</pre>
# reference peak file
reference <- list("ENCODE" = encode_H3K27ac)
### Run EpiCompare ###
output_html <- EpiCompare(peakfiles = peakfiles,
           genome_build = list(peakfiles="hg19",
                                reference="hg19"),
           picard_files = picard_files,
```

22 fragment_info

```
reference = reference,
    output_filename = "EpiCompare_test",
    output_dir = tempdir())
# utils::browseURL(output_html)
```

fig_length

Dynamic Figure Length Generator

Description

This function calculates the appropriate figure height depending on the number of items.

Usage

```
fig_length(default_size, number_of_items, max_items)
```

Arguments

default_size The default figure length. Must be numeric.
number_of_items
Number of peak files, or terms.
max_items Maximum number of peak files, or terms.

Value

Figure height/width. A number.

fragment_info

Summary on fragments

Description

This function outputs a summary on fragments using metrics generated by Picard. Provides the number of mapped fragments, duplication rate and number of unique fragments.

Usage

```
fragment_info(picard_list)
```

Arguments

picard_list

Named list of duplication metrics generated by Picard as data frame. Data frames must be named and listed using list(). e.g. list("name1"=file1, "name2"=file2). To import Picard duplication metrics (.txt file) into R as data frame, use picard <- read.table("/path/to/picard/output", header = TRUE, fill = TRUE).

gather_files 23

Value

A table summarizing metrics on fragments.

Examples

gather_files

Gather files

Description

Recursively find peak/picard files stored within subdirectories and import them as a list of GRanges objects.

Usage

```
gather_files(
   dir,
   type = "peaks.stringent",
   nfcore_cutandrun = FALSE,
   return_paths = FALSE,
   rbind_list = FALSE,
   workers = check_workers(),
   verbose = TRUE
)
```

Arguments

dir

Directory to search within.

type

File type to search for. Options include:

- "<pattern>"Finds files matching an arbitrary regex pattern specified by user.
- "peaks.stringent"Finds files ending in "*.stringent.bed\$"
- "peaks.consensus"Finds files ending in "*.consensus.peaks.bed\$"
- "peaks.consensus.filtered" Finds files ending in"*.consensus.peaks.filtered.awk.bed\$"
- "picard"Finds files ending in "*.target.markdup.MarkDuplicates.metrics.txt\$"

24 gather_files_names

nfcore_cutandrun

Whether the files were generated by the nf-core/cutandrun Nextflow pipeline. If TRUE, can use the standardised folder structure to automatically generate more

descriptive file names with sample IDs.

Return only the file paths without actually reading them in as GRanges. return_paths

rbind_list Bind all objects into one.

workers Number of cores to parallelise across (in applicable functions). If NULL, will set

to the total number of available cores minus 1.

verbose Print messages.

Details

For "peaks.stringent" files called with SEACR, column names will be automatically added:

- total_signal : Total signal contained within denoted coordinates.
- max_signalMaximum bedgraph signal attained at any base pair within denoted coordinates.
- max_signal_region Region representing the farthest upstream and farthest downstream bases within the denoted coordinates that are represented by the maximum bedgraph signal.

Value

A named list of GRanges objects.

Examples

```
#### Make example files ####
save_paths <- EpiCompare::write_example_peaks()</pre>
dir <- unique(dirname(save_paths))</pre>
#### Gather/import files ####
peaks <- EpiCompare::gather_files(dir=dir,</pre>
                                     type="peaks.narrow",
                                     workers = 1)
```

gather_files_names

Make file names

Description

Support function for gather_files.

Usage

```
gather_files_names(paths, type, nfcore_cutandrun, verbose = TRUE)
```

get_bpparam 25

Arguments

paths Character vector of file paths.

type File type to search for. Options include:

- "<pattern>"Finds files matching an arbitrary regex pattern specified by user.
- "peaks.stringent"Finds files ending in "*.stringent.bed\$"
- "peaks.consensus"Finds files ending in "*.consensus.peaks.bed\$"
- "peaks.consensus.filtered" Finds files ending in"*.consensus.peaks.filtered.awk.bed\$"
- "picard"Finds files ending in "*.target.markdup.MarkDuplicates.metrics.txt\$"

nfcore_cutandrun

Whether the files were generated by the nf-core/cutandrun Nextflow pipeline. If TRUE, can use the standardised folder structure to automatically generate more

descriptive file names with sample IDs.

verbose Print messages.

Value

Named character vector.

get_bpparam

Get BiocParallel parameters

Description

Get (and optionally register) BiocParallel parameter (BPPARAM). SnowParam is the default function as it tends to be more robust. However, because it doesn't work on Windows, this function automatically detected the Operating System and switches to SerialParam as needed.

Usage

```
get_bpparam(
  workers,
  progressbar = workers > 1,
  use_snowparam = TRUE,
  register_now = FALSE
)
```

Arguments

workers Number of threads to parallelize across.

progressbar logical(1) Enable progress bar (based on plyr:::progress_text).

use_snowparam Whether to use SnowParam (default: TRUE) or MulticoreParam (FALSE) when

parallelising across multiple workers.

register_now Register the cores now with register (TRUE), or simply return the BPPARAM object

(default: FALSE).

Value

BPPARAM

```
get_chromHMM_annotation
```

Download ChromHMM annotation file(s)

Description

Download ChromHMM annotation file(s) for a given cell-line (returned as a GRanges object) or a list of cell-lines (returned as a named list of GRanges objects). All annotations are aligned to the hg19 genome build. All data can be found on the UCSC Genome Browser here.

Usage

```
get_chromHMM_annotation(
  cell_line,
  cache = BiocFileCache::BiocFileCache(ask = FALSE)
)
```

Arguments

cell_line

ChromHMM annotation for user-specified cell-line. Cell-line options are:

- "K562" = K-562 cells
- "Gm12878" = Cellosaurus cell-line GM12878
- "H1hesc" = H1 Human Embryonic Stem Cell
- "Hepg2" = Hep G2 cell
- "Hmec" = Human Mammary Epithelial Cell
- "Hsmm" = Human Skeletal Muscle Myoblasts
- "Huvec" = Human Umbilical Vein Endothelial Cells
- "Nhek" = Normal Human Epidermal Keratinocytes
- "Nhlf" = Normal Human Lung Fibroblasts

Value

Cell-line specific ChromHMM annotation file. Default K562 cell-line.

group_files 27

group_files	
-------------	--

Group files

Description

Assign group names to each file in a named list based on a series of string searches based on combinations of relevant metadata factors.

Usage

```
group_files(peakfiles, searches)
```

Arguments

peakfiles A list of peak files as GRanges object and/or as paths to BED files. If paths

are provided, EpiCompare imports the file as GRanges object. EpiCompare also accepts a list containing a mix of GRanges objects and paths. Files must be listed and named using list(). E.g. list("name1"=file1, "name2"=file2). If no

names are specified, default file names will be assigned.

searches A named list of substrings to group peakfiles by.

Value

Named peak files

Examples

hg19_blacklist

Human genome hg19 blacklisted regions

Description

Obtained from https://www.encodeproject.org/files/ENCFF001TD0. The ENCODE blacklist includes regions of the hg19 genome that have anomalous and/or unstructured signals independent of the cell-line or experiment. Removal of ENCODE blacklist is recommended for quality measure.

28 hg38_blacklist

Usage

```
data("hg19_blacklist")
```

Format

An object of class GRanges of length 411.

Source

The code to prepare the .Rda file is:

```
# blacklisted regions were directly downloaded
# from https://www.encodeproject.org/files/ENCFF001TDO/
hg19_blacklist <-ChIPseeker::readPeakFile(file.path(path), as = "GRanges")
usethis::use_data(hg19_blacklist, overwrite = TRUE)</pre>
```

hg38_blacklist

Human genome hg38 blacklisted regions

Description

Obtained from https://www.encodeproject.org/files/ENCFF356LFX/. The ENCODE black-list includes regions of the hg38 genome that have anomalous and/or unstructured signals independent of the cell-line or experiment. Removal of ENCODE blacklist is recommended for quality measure.

Usage

```
data("hg38_blacklist")
```

Format

An object of class GRanges of length 910.

Source

The code to prepare the .Rda file is:

```
## blacklisted regions were directly downloaded
## from https://www.encodeproject.org/files/ENCFF356LFX/
hg38_blacklist <-ChIPseeker::readPeakFile(file.path(path), as = "GRanges")
usethis::use_data(hg38_blacklist, overwrite = TRUE)</pre>
```

is_granges 29

is_granges

Is an object of class GRanges

Description

Check whether an object is of the class GRanges.

Usage

```
is_granges(obj)
```

Arguments

obj

Any R object.

Value

Boolean.

liftover_grlist

Liftover peak list

Description

Perform genome build liftover to one or more GRanges objects at once.

Usage

```
liftover_grlist(
  grlist,
  input_build,
  output_build = "hg19",
  style = "UCSC",
  keep_chr = paste0("chr", c(seq_len(22), "X", "Y")),
  as_grangeslist = FALSE,
  merge_all = FALSE,
  verbose = TRUE
)
```

30 messager

Arguments

grlist A named list of GRanges objects, or simply a single unlisted GRanges object. Can perform liftover within species or across species. The genome build of grlist. input_build output_build Desired genome build for grlist to be lifted over to. style Chromosome style, set by seqlevelsStyle. • "UCSC": Uses the chromosome style "chr1". • "NCBI": Uses the chromosome style "1" Which chromosomes to keep. keep_chr as_grangeslist Return as a GRangesList. merge_all Merge all GRanges into a single GRanges object.

Value

verbose

Named list of lifted GRanges objects.

Print messages.

Examples

messager

Print messages

Description

Conditionally print messages. Allows developers to easily control verbosity of functions, and meet Bioconductor requirements that dictate the message must first be stored to a variable before passing to message.

Usage

```
messager(..., v = TRUE, parallel = FALSE)
```

Arguments

Whether to print messages or not.

parallel Whether to enable message print when wrapped in parallelised functions.

message_parallel 31

Value

Null

message_parallel

Message parallel

Description

Send messages to console even from within parallel processes

Usage

```
message_parallel(...)
```

Value

A message

mm10_blacklist

Mouse genome mm10 blacklisted regions

Description

Obtained from https://www.encodeproject.org/files/ENCFF547MET/. The ENCODE black-list includes regions of the mm10 genome that have anomalous and/or unstructured signals independent of the cell-line or experiment. Removal of ENCODE blacklist is recommended for quality measure.

Usage

```
data("mm10_blacklist")
```

Format

An object of class GRanges of length 164.

Source

```
The code to prepare the .Rda file is:

## blacklisted regions were directly downloaded

## from https://www.encodeproject.org/files/ENCFF547MET/

mm10_blacklist <-ChIPseeker::readPeakFile(file.path(path), as = "GRanges")

usethis::use_data(mm10_blacklist, overwrite = TRUE)
```

32 overlap_heatmap

mm9_blacklist

Mouse genome mm9 blacklisted regions

Description

Blaklisted regions of the mm9 genome build brained by lifting over the mm10_blacklist.

Usage

```
data("mm9_blacklist")
```

Format

An object of class GRanges of length 292.

Source

```
tmp <- base::get("mm10_blacklist", asNamespace("EpiCompare")) mm9_blacklist <- liftover_grlist(grlist
= tmp, input_build = "mm10", output_build = "mm9", keep_chr = NULL) usethis::use_data(mm9_blacklist,
overwrite = TRUE)</pre>
```

overlap_heatmap

Generate heatmap of percentage overlap

Description

This function generates a heatmap showing percentage of overlapping peaks between peak files.

Usage

```
overlap_heatmap(
  peaklist,
  interact = TRUE,
  draw_cellnote = TRUE,
  fill_diag = NA,
  verbose = TRUE
)
```

Arguments

A list of peak files as GRanges object. Files must be listed and named using list(). e.g. list("name1"=file1, "name2"=file2). If not named, default file names will be assigned.

interact Default TRUE. By default heatmap is interactive. If FALSE, heatmap is static.

draw_cellnote Draw the numeric values within each heatmap cell.

fill_diag Fill the diagonal of the overlap matrix.

verbose Print messages.

33 overlap_percent

Value

An interactive heatmap

Examples

```
### Load Data ###
data("encode_H3K27ac") # example peakfile GRanges object
data("CnT_H3K27ac") # example peakfile GRanges object
### Create Named List ###
peaklist <- list("encode"=encode_H3K27ac, "CnT"=CnT_H3K27ac)</pre>
### Run ###
my_heatmap <- overlap_heatmap(peaklist = peaklist)</pre>
```

overlap_percent

Calculate percentage of overlapping peaks

Description

This function calculates the percentage of overlapping peaks and outputs a table or matrix of results.

Usage

```
overlap_percent(
  peaklist1,
  peaklist2,
  invert = FALSE,
  precision_recall = TRUE,
  suppress_messages = TRUE
)
```

Arguments

peaklist1 A list of peak files as GRanges object. Files must be listed and named using list(). e.g. list("name1"=file1, "name2"=file2). If not named, default file names will be assigned. peaklist2 peaklist1 A list of peak files as GRanges object. Files must be listed and named using list(). e.g. list("name1"=file1, "name2"=file2). invert If TRUE, keep only the ranges in x that do *not* overlap ranges. precision_recall Return percision-recall results for all combinations of peaklist1 (the "query")

and peaklist2 (the "subject"). See subsetByOverlaps for more details on this terminology.

suppress_messages

Suppress messages.

Value

data frame

34 overlap_stat_plot

Examples

overlap_stat_plot

Statistical significance of overlapping peaks

Description

This function calculates the statistical significance of overlapping/ non-overlapping peaks against a reference peak file. If the reference peak file has the BED6+4 format (peak called by MACS2), the function generates a series of box plots showing the distribution of q-values for sample peaks that are overlapping and non-overlapping with the reference. If the reference peak file does not have the BED6+4 format, the function uses enrichPeakOverlap from **ChIPseeker** package to calculate the statistical significance of overlapping peaks only. In this case, please provide an annotation file as a TxDb object.

Usage

```
overlap_stat_plot(
  reference,
  peaklist,
  txdb = NULL,
  interact = FALSE,
  nShuffle = 50,
  digits = 4,
  workers = check_workers()
```

Arguments

reference A reference peak file as GRanges object.

peaklist A list of peak files as GRanges object. Files must be listed and named using

list(). E.g. list("name1"=file1, "name2"=file2). If not named, default

file names will be assigned.

txdb A TxDb annotation object from Bioconductor. This is required only if the refer-

ence file does not have BED6+4 format.

overlap_upset_plot 35

Default TRUE. By default, plots are interactive. If set FALSE, all plots in the report will be static.

nShuffle shuffle numbers integer indicating the number of decimal places (round) or significant digits (signif) to be used. For round, negative values are allowed (see 'Details').

Number of threads to parallelize across.

Value

A named list.

workers

"plot"boxplot/barplot showing the statistical significance of overlapping/non-overlapping peaks.

• "data"Plot data.

Examples

overlap_upset_plot

Generate Upset plot for overlapping peaks

Description

This function generates upset plot of overlapping peaks files using the **ComplexUpset** package.

Usage

```
overlap_upset_plot(peaklist, verbose = TRUE)
```

Arguments

peaklist A named list of peak files as GRanges object. Objects must be listed and named

using list(). e.g. list("name1"=file1, "name2"=file2). If not named,

default file names are assigned.

verbose Print messages

Value

Upset plot of overlapping peaks.

36 peak_info

Examples

```
### Load Data ###
data("encode_H3K27ac") # load example data
data("CnT_H3K27ac") # load example data
peaklist <- list("encode"=encode_H3K27ac, "CnT"=CnT_H3K27ac)
my_plot <- overlap_upset_plot(peaklist = peaklist)</pre>
```

peak_info

Summary of Peak Information

Description

This function outputs a table summarizing information on the peak files. Provides the total number of peaks and the percentage of peaks in blacklisted regions.

Usage

```
peak_info(peaklist, blacklist)
```

Arguments

peaklist A named list of peak files as GRanges object. Objects listed using list("name1"

= peak, "name2" = peak2).

blacklist A GRanges object containing blacklisted regions.

Value

A summary table of peak information

Examples

```
plot_ChIPseeker_annotation
```

Create ChIPseeker annotation plot

Description

This function annotates peaks using ChIPseeker::annotatePeak. It outputs functional annotation of each peak file in a barplot.

Usage

```
plot_ChIPseeker_annotation(
  peaklist,
  txdb = NULL,
  tss_distance = c(-3000, 3000),
  interact = FALSE
)
```

Arguments

peaklist A list of peak files as GRanges object. Files must be listed and named using

list(). e.g. list("name1"=file1, "name2"=file2). If not named, default

file names will be assigned.

txdb A TxDb annotation object from Bioconductor.

tss_distance A vector specifying the distance upstream and downstream around transcription

start sites (TSS). The default value is c(-3000, 3000); meaning peak frequency

3000bp upstream and downstream of TSS will be displayed.

interact Default TRUE. By default, plots are interactive. If set FALSE, all plots in the

report will be static.

Value

ggplot barplot

38 plot_chromHMM

plot_chromHMM

Plot ChromHMM heatmap

Description

Creates a heatmap using outputs from ChromHMM using ggplot2. The function takes a list of peakfiles, performs ChromHMM and outputs a heatmap. ChromHMM annotation file must be loaded prior to using this function. ChromHMM annotations are aligned to hg19, and will be automatically lifted over to the genome_build to match the build of the peaklist.

Usage

```
plot_chromHMM(
   peaklist,
   chromHMM_annotation,
   genome_build,
   cell_line = NULL,
   interact = FALSE,
   return_data = FALSE
)
```

Arguments

peaklist A named list of peak files as GRanges object. If list is not named, default names

will be assigned.

chromHMM_annotation

ChromHMM annotation list.

genome_build The human genome reference build used to generate peakfiles. "hg19" or "hg38".

cell_line If not cell_line, will replace chromHMM_annotation by importing chromHMM

data for a given cell line using get_chromHMM_annotation.

interact Default TRUE. By default, the heatmaps are interactive. IfFALSE, the function

generates a static ChromHMM heatmap.

return_data Return the plot data as in addition to the plot itself.

Value

ChromHMM heatmap, or a named list.

```
### Load Data ###
data("CnT_H3K27ac") # example dataset as GRanges object
data("CnR_H3K27ac") # example dataset as GRanges object
### Create Named Peaklist ###
peaklist <- list(CnT=CnT_H3K27ac, CnR=CnR_H3K27ac)
### Run ###</pre>
```

plot_corr 39

plot_corr

Plot correlation of peak files

Description

Plot correlation by binning genome and measuring correlation of peak quantile ranking. This ranking is based on p-value or other peak intensity measure dependent on the peak calling approach.

Usage

```
plot_corr(
  peakfiles,
  reference = NULL,
  genome_build,
  bin_size = 5000,
  keep\_chr = NULL,
  drop_empty_chr = FALSE,
  method = "spearman",
  intensity_cols = c("total_signal", "qValue", "Peak Score", "score"),
  interact = FALSE,
  draw_cellnote = TRUE,
  fill_diag = NA,
 workers = check_workers(),
  show_plot = TRUE,
  save_path = tempfile(fileext = ".corr.csv.gz")
)
```

Arguments

peakfiles

A list of peak files as GRanges object and/or as paths to BED files. If paths are provided, EpiCompare imports the file as GRanges object. EpiCompare also accepts a list containing a mix of GRanges objects and paths. Files must be listed and named using list(). E.g. list("name1"=file1, "name2"=file2). If no names are specified, default file names will be assigned.

reference

A named list containing reference peak file(s) as GRanges object. Please ensure that the reference file is listed and named i.e. list("reference_name" = reference_peak). If more than one reference is specified, individual reports for each reference will be generated. However, please note that specifying more than one reference can take awhile. If a reference is specified, it enables two analyses: (1) plot showing statistical significance of overlapping/non-overlapping peaks; and (2) ChromHMM of overlapping/non-overlapping peaks.

40 plot_corr

genome_build The build of **all** peak and reference files to calculate the correlation matrix on. If all peak and reference files are not of the same build use liftover_grlist to convert them all before running. Genome build should be one of hg19, hg38, mm9, mm10.

bin_size Default of 100. Base-pair size of the bins created to measure correlation. Use

smaller value for higher resolution but longer run time and larger memory usage.

keep_chr Which chromosomes to keep.

drop_empty_chr Drop chromosomes that are not present in any of the peakfiles (default: FALSE).

method Default spearman (i.e. non-parametric). A character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson",

"kendall", or "spearman": can be abbreviated.

intensity_cols Depending on which columns are present, this value will be used to get quantiles and ultimately calculate the correlations:

- "total_signal": Used by the peak calling software SEACR. NOTE: Another SEACR column (e.g. "max_signal") can be used together or instead of "total_signal".
- "qValue"Used by the peak calling software MACS2/3. Should contain the negative log of the p-values after multiple testing correction.
- "Peak Score": Used by the peak calling software HOMER.

interact Default TRUE. By default heatmap is interactive. If FALSE, heatmap is static.

fill_diag Fill the diagonal of the overlap matrix.
workers Number of threads to parallelize across.

show_plot Show the plot.

save_path Path to save a table of correlation results to.

Value

list with correlation plot (corr_plot) and correlation matrix (data)

plot_enrichment 41

Description

This function runs KEGG and GO enrichment analysis of peak files and generates dot plots.

Usage

```
plot_enrichment(
  peaklist,
  txdb = NULL,
  tss_distance = c(-3000, 3000),
  pvalueCutoff = 0.05,
  interact = FALSE,
  verbose = TRUE
)
```

Arguments

peaklist A list of peak files as GRanges object. Files must be listed and named using

list(). e.g. list("name1"=file1, "name2"=file2). If not named, default

file names will be assigned.

txdb A TxDb annotation object from Bioconductor.

tss_distance A vector specifying the distance upstream and downstream around transcription

start sites (TSS). The default value is c(-3000, 3000); meaning peak frequency

3000bp upstream and downstream of TSS will be displayed.

pvalueCutoff P-value cutoff, passed to compareCluster.

interact Default TRUE. By default, plots are interactive. If set FALSE, all plots in the

report will be static.

verbose Print messages.

Value

KEGG and GO dot plots

plot_precision_recall

plot_precision_recall Plot precision-recall curves

Description

Plot precision-recall curves (and optionally F1 plots) by iteratively testing for peak overlap across a series of thresholds used to filter peakfiles. Each GRanges object in peakfiles will be used as the "query" against each GRanges object in reference as the subject. Will automatically use any columns that are specified with thresholding_cols and present within each GRanges object to create percentiles for thresholding. *NOTE*: Assumes that all GRanges in peakfiles and reference are already aligned to the same genome build.

Usage

```
plot_precision_recall(
  peakfiles,
  reference,
  thresholding_cols = c("total_signal", "qValue", "Peak Score"),
  initial_threshold = 0,
  n_{threshold} = 20,
 max_{threshold} = 1,
 workers = check_workers(),
  plot_f1 = TRUE,
  subtitle = NULL,
  color = "peaklist1",
  shape = color,
  facets = "peaklist2 ~ .",
  interact = FALSE,
  show_plot = TRUE,
  save_path = tempfile(fileext = "precision_recall.csv"),
  verbose = TRUE
)
```

Arguments

peakfiles

A list of peak files as GRanges object and/or as paths to BED files. If paths are provided, EpiCompare imports the file as GRanges object. EpiCompare also accepts a list containing a mix of GRanges objects and paths. Files must be listed and named using list(). E.g. list("name1"=file1, "name2"=file2). If no names are specified, default file names will be assigned.

reference

A named list containing reference peak file(s) as GRanges object. Please ensure that the reference file is listed and named i.e. list("reference_name" = reference_peak). If more than one reference is specified, individual reports for each reference will be generated. However, please note that specifying more than one reference can take awhile. If a reference is specified, it enables two analyses: (1) plot showing statistical significance of overlapping/non-overlapping peaks; and (2) ChromHMM of overlapping/non-overlapping peaks.

plot_precision_recall 43

thresholding_cols

Depending on which columns are present, GRanges will be filtered at each threshold according to one or more of the following:

- "total_signal": Used by the peak calling software SEACR. NOTE: Another SEACR column (e.g. "max_signal") can be used together or instead of "total_signal".
- "qValue"Used by the peak calling software MACS2/3. Should contain the negative log of the p-values after multiple testing correction.
- "Peak Score": Used by the peak calling software HOMER.

initial_threshold

Numeric threshold that was provided to SEACR (via the parameter --ctrl) when calling peaks without an IgG control.

n_thresholdNumber of thresholds to test.max_thresholdMaximum threshold to test.

workers Number of threads to parallelize across.

plot_f1 Generate a plot with the F1 score vs. threshold as well.

subtitle Plot subtitle.

color Variable to color data points by.
shape Variable to set data point shapes by.

facets [Deprecated] Please use rows and cols instead.

interact Default TRUE. By default, plots are interactive. If set FALSE, all plots in the

report will be static.

show_plot Show the plot.

save_path File path to save precision-recall results to.

verbose Print messages.

Value

list with data and precision recall and F1 plots

44 precision_recall

precision_recall

Compute precision-recall

Description

Compute precision and recall using each GRanges object in peakfiles as the "query" against each GRanges object in reference as the subject.

Usage

```
precision_recall(
  peakfiles,
  reference,
  thresholding_cols = c("total_signal", "qValue", "Peak Score"),
  initial_threshold = 0,
  n_threshold = 20,
  max_threshold = 1,
  cast = TRUE,
  workers = 1,
  verbose = TRUE,
  save_path = tempfile(fileext = "precision_recall.csv"),
  ...
)
```

Arguments

peakfiles

A list of peak files as GRanges object and/or as paths to BED files. If paths are provided, EpiCompare imports the file as GRanges object. EpiCompare also accepts a list containing a mix of GRanges objects and paths. Files must be listed and named using list(). E.g. list("name1"=file1, "name2"=file2). If no names are specified, default file names will be assigned.

reference

A named list containing reference peak file(s) as GRanges object. Please ensure that the reference file is listed and named i.e. list("reference_name" = reference_peak). If more than one reference is specified, individual reports for each reference will be generated. However, please note that specifying more than one reference can take awhile. If a reference is specified, it enables two analyses: (1) plot showing statistical significance of overlapping/non-overlapping peaks; and (2) ChromHMM of overlapping/non-overlapping peaks.

thresholding_cols

Depending on which columns are present, GRanges will be filtered at each threshold according to one or more of the following:

- "total_signal": Used by the peak calling software SEACR. NOTE: Another SEACR column (e.g. "max_signal") can be used together or instead of "total_signal".
- "qValue"Used by the peak calling software MACS2/3. Should contain the negative log of the p-values after multiple testing correction.

precision_recall_matrix

• "Peak Score": Used by the peak calling software **HOMER**.

initial_threshold

Numeric threshold that was provided to SEACR (via the parameter --ctrl)

45

when calling peaks without an IgG control.

n_threshold Number of thresholds to test.max_threshold Maximum threshold to test.

cast Cast the data into a format that's more compatible with **ggplot2**.

workers Number of threads to parallelize across.

verbose Print messages.

save_path File path to save precision-recall results to.

... Arguments passed on to bpplapply

apply_fun Iterator function to use.

 ${\tt register_now}\ \ Register\ the\ cores\ now\ with\ {\tt register}\ ({\tt TRUE}), or\ simply\ return\ the$

BPPARAM object (default: FALSE).

 $use_snowparam\ \ Whether\ to\ use\ \underline{SnowParam}\ (default:\ TRUE)\ or\ \underline{MulticoreParam}$

(FALSE) when parallelising across multiple workers.

progressbar logical(1) Enable progress bar (based on plyr:::progress_text).

X Any object for which methods length, [, and [[are implemented.

FUN The function to be applied to each element of X.

Value

Overlap

Examples

```
precision_recall_matrix
```

Create a precision-recall matrix

Description

Converts a list of peak files to a symmetric matrix where the y-axis indicates precision and the x-axis indicates recall.

Usage

```
precision_recall_matrix(peaklist, fill_diag = NA, verbose = TRUE)
```

Arguments

fill_diag Fill the diagonal of the overlap matrix.

verbose Print messages.

Value

matrix

```
predict_precision_recall
```

Predict precision-recall

Description

Predict specific values of precision or recall by fitting a model to a precision-recall curve. Predictions that are <0 will automatically be set to 0. Predictions that are >100 will automatically be set to 100.

Usage

```
predict_precision_recall(
  pr_df,
  fun = stats::loess,
  precision = seq(10, 100, 10),
  recall = seq(10, 100, 10)
)
```

Arguments

pr_df Precision-recall data.frame generated by precision_recall.

fun Function to fit the data with.

precision Precision values to predict recall from.

recall Recall values to predict precision from.

Value

A named list of fitted models and predictions.

Source

Fix for producing NAs from loess fun.

predict_values 47

Examples

predict_values

Predict values

Description

Fit a model and make predictions from it.

Usage

```
predict_values(df, fun, values, input_var, predicted_var)
```

Arguments

df data.frame

fun Function to fit the data with.

values Values to make predictions from.

input_var Input variable column name.
predicted_var Predicted variable name.

Value

data.frame

prepare_blacklist

Prepare blacklist as GRanges

Description

Selects the appropriate blacklist in a variety of conditions.

Usage

```
prepare_blacklist(
  blacklist,
  output_build,
  blacklist_build = NULL,
  verbose = TRUE
)
```

Arguments

output_build Desired genome build for grlist to be lifted over to. blacklist_build

Genome build of the blacklist. Only used when blacklist is a user-supplied GRanges object.

verbose Print messages.

Value

A GRanges objects of blacklisted genomic regions from the relevant genome build.

```
prepare_genome_builds Prepare genome builds
```

Description

Parse the genome_build argument into peaklist_build and reference_build.

Usage

```
prepare_genome_builds(genome_build, blacklist = NULL)
```

Arguments

genome_build

A named list indicating the human genome build used to generate each of the following inputs:

- "peakfiles": Genome build for the peakfiles input. Assumes genome build is the same for each element in the peakfiles list.
- "reference": Genome build for the reference input.
- "blacklist": Genome build for the blacklist input.

Example input list:

```
genome_build = list(peakfiles="hg38", reference="hg19", blacklist="hg19")
```

Alternatively, you can supply a single character string instead of a list. This should *only* be done in situations where all three inputs (peakfiles, reference, blacklist) are of the same genome build. For example:

```
genome_build = "hg19"
```

prepare_peaklist 49

blacklist

A GRanges object containing blacklisted genomic regions. Blacklists included in **EpiCompare** are:

- NULL (default): Automatically selects the appropriate blacklist based on the genome_build_output argument.
- "hg19_blacklist": Regions of hg19 genome that have anomalous and/or unstructured signals. hg19_blacklist
- "hg38_blacklist": Regions of hg38 genome that have anomalous and/or unstructured signals. hg38_blacklist
- "mm10_blacklist": Regions of mm10 genome that have anomalous and/or unstructured signals. mm10_blacklist
- "mm9_blacklist": Blacklisted regions of mm10 genome that have been lifted over from mm10_blacklist. mm9_blacklist
- <user_input>: A custom user-provided blacklist in GRanges format.

Value

Named list.

prepare_peaklist

Prepare peaklist as GRanges

Description

Prepare peaklist as GRanges

Usage

```
prepare_peaklist(peaklist, remove_empty = TRUE, as_grangeslist = FALSE)
```

Arguments

peaklist A named list of peaks as GRanges or paths to BED files.

remove_empty Remove any empty elements in the list.

as_grangeslist Convert output to class GRangesList before returning.

Value

A list of GRanges objects

50 read_bowtie

prepare_reference

Prepare reference as GRanges

Description

Prepare reference as GRanges

Usage

```
prepare_reference(
  reference,
  max_elements = NULL,
  remove_empty = TRUE,
  as_list = TRUE,
  as_grangeslist = FALSE
)
```

Arguments

reference A named list of GRanges objects, or a single GRanges object to be converted

into a named list.

max_elements Max number of elements to use within the list. Set to NULL (default) to use all

elements.

remove_empty Remove any empty elements in the list.

as_list Return as a list.

as_grangeslist Return as a GRangesList (overrides as_list).

Value

A list of GRanges objects

read_bowtie

Read bowtie

Description

Read a bowtie file.

Usage

```
read_bowtie(path, verbose = TRUE)
```

Arguments

path Path to bowtie file. verbose Print messages.

read_peaks 51

Value

data.table

read_peaks

Read peaks

Description

Read peak files.

Usage

```
read_peaks(path, type, verbose = TRUE)
```

Arguments

path

Path to peak file.

type

File type to search for. Options include:

- "<pattern>"Finds files matching an arbitrary regex pattern specified by user.
- "peaks.stringent"Finds files ending in "*.stringent.bed\$"
- "peaks.consensus"Finds files ending in "*.consensus.peaks.bed\$"
- $\bullet \ \ "peaks.consensus.filtered" \ Finds \ files \ ending \ in "*.consensus.peaks.filtered.awk.bed\$"$
- "picard"Finds files ending in "*.target.markdup.MarkDuplicates.metrics.txt\$"

verbose

Print messages.

Value

GRanges

rebin_peaks

Rebin peaks

Description

Standardise a list of peak files by rebinning them into fixd-width tiles across the genome.

52 rebin_peaks

Usage

```
rebin_peaks(
  peakfiles,
  genome_build,
  intensity_cols = c("total_signal", "qValue", "Peak Score", "score"),
  bin_size = 5000,
  keep_chr = NULL,
  sep = c(":", "-"),
  drop_empty_chr = FALSE,
  as_sparse = TRUE,
 workers = check_workers(),
  verbose = TRUE,
)
```

Arguments

peakfiles

A list of peak files as GRanges object and/or as paths to BED files. If paths are provided, EpiCompare imports the file as GRanges object. EpiCompare also accepts a list containing a mix of GRanges objects and paths. Files must be listed and named using list(). E.g. list("name1"=file1, "name2"=file2). If no names are specified, default file names will be assigned.

genome_build

The build of **all** peak and reference files to calculate the correlation matrix on. If all peak and reference files are not of the same build use liftover grlist to convert them all before running. Genome build should be one of hg19, hg38, mm9, mm10.

intensity_cols Depending on which columns are present, this value will be used to get quantiles and ultimately calculate the correlations:

- "total_signal": Used by the peak calling software SEACR. NOTE: Another SEACR column (e.g. "max_signal") can be used together or instead of "total_signal".
- "qValue"Used by the peak calling software MACS2/3. Should contain the negative log of the p-values after multiple testing correction.
- "Peak Score": Used by the peak calling software HOMER.

bin_size

Default of 100. Base-pair size of the bins created to measure correlation. Use smaller value for higher resolution but longer run time and larger memory usage.

keep_chr

Which chromosomes to keep.

sep

Separator to be used after chromosome name (first item) and between start/end genomic coordinates (second item).

drop_empty_chr

Drop chromosomes that are not present in any of the peakfiles (default: FALSE).

as_sparse

Return the rebinned peaks as a sparse matrix (default: TRUE), which is more

efficiently stored than a dense matrix (FALSE).

workers verbose Number of threads to parallelize across.

Print messages.

Arguments passed on to bpplapply

apply_fun Iterator function to use.

register_now Register the cores now with register (TRUE), or simply return the BPPARAM object (default: FALSE).

use_snowparam Whether to use SnowParam (default: TRUE) or MulticoreParam (FALSE) when parallelising across multiple workers.

progressbar logical(1) Enable progress bar (based on plyr:::progress_text).
X Any object for which methods length, [, and [[are implemented.

FUN The function to be applied to each element of X.

Value

Binned peaks matrix

Examples

remove_nonstandard_chrom

Remove non-standard chromosomes

Description

Remove non-standard chromosomes from a list of GRanges objects.

Usage

```
remove_nonstandard_chrom(
  grlist,
  keep_chr = paste0("chr", c(seq_len(22), "X", "Y")),
  verbose = TRUE
)
```

Arguments

grlist Named list of GRanges objects.
keep_chr Which chromosomes to keep.
verbose Print messages.

54 report_header

Value

Named list of GRanges objects.

report_command

Report command

Description

Reconstruct the EpiCompare command used to generate the current Rmarkdown report.

Usage

```
report_command(params, peaklist_tidy, reference_tidy)
```

Arguments

params Parameters supplied to the Rmarkdown template.

peaklist_tidy Post-processed target peaks.

reference_tidy Post-processed reference peaks.

Value

String reconstructing R function call.

Examples

```
# report_command()
```

report_header

Report header

Description

Generate a header for EpiCompare reports generated using the EpiCompare.Rmd template.

Usage

```
report_header()
```

Value

Header string to be rendering within Rmarkdown file.

```
report_header()
```

save_output 55

save_output Save output

Description

This function saves data frames and plots generated by EpiCompare.

Usage

```
save_output(
   save_output = FALSE,
   file,
   file_type,
   filename,
   outpath,
   interactive = FALSE,
   verbose = TRUE
)
```

Arguments

save_output Default FALSE. If TRUE, outputs are saved.

file Tables and plots to be saved.

file_type Type of file to be saved. "data.frame", "ggplot", "image"

filename Name of file.
outpath Outpath

interactive Default FALSE. If TRUE, interactive plots are saved as html.

verbose Print messages.

Value

Saved data frames and plots.

Description

Set the min/max values in a data.frame.

Usage

```
set_min_max(df, colname, min_val = 0, max_val = 100)
```

56 tidy_peakfile

Arguments

df data.frame

colname Column name to check.

min_val Minimum value.

max_val Maximum value.

Value

data.frame

stopper

Stop messages

Description

Conditionally print stop messages. Allows developers to easily control verbosity of functions, and meet Bioconductor requirements that dictate the stop message must first be stored to a variable before passing to stop.

Usage

```
stopper(..., v = TRUE)
```

Arguments

V

Whether to print messages or not.

Value

Null

tidy_peakfile

Tidy peakfiles in GRanges

Description

This function filters peak files by removing peaks in blacklisted regions and in non-standard chromosomes. It also checks that the input list of peakfiles is named. If no names are provided, default file names will be used.

Usage

```
tidy_peakfile(peaklist, blacklist)
```

translate_genome 57

Arguments

peaklist A named list of peak files as GRanges object. Objects must be named and listed

using list(). e.g. list("name1"=file1, "name2"=file2) If not named, de-

fault names are assigned.

blacklist Peakfile specifying blacklisted regions as GRanges object.

Value

list of GRanges object

Examples

translate_genome

Translate genome

Description

Translate the name of a genome build from one format to another.

Usage

```
translate_genome(
  genome,
  style = c("UCSC", "Ensembl", "NCBI"),
  default_genome = NULL,
  omit_subversion = TRUE
)
```

Arguments

genome A character vector of genomes equivalent to UCSC version or Ensembl Assem-

blies

style A single value equivalent to "UCSC" or "Ensembl" specifying the output genome

default_genome Default genome build when genome is NULL.

 $omit_subversion$

Omit any subversion suffixes after the ".".

58 tss_plot

Value

Standardized genome build name as a character string.

Examples

```
genome <- translate_genome(genome="hg38", style="Ensembl")
genome2 <- translate_genome(genome="mm10", style="UCSC")</pre>
```

tss_plot

Read count frequency around TSS

Description

This function generates a plot of read count frequency around TSS.

Usage

```
tss_plot(
  peaklist,
  txdb = NULL,
  tss_distance = c(-3000, 3000),
  conf = 0.95,
  resample = 500,
  interact = FALSE,
  workers = check_workers()
)
```

Arguments

peaklist	A list of peak files as GRanges object. Files must be listed and named using list(). e.g. list("name1"=file1, "name2"=file2) If not named, default file names will be assigned.
txdb	A TxDb annotation object from Bioconductor.
tss_distance	A vector specifying the distance upstream and downstream around transcription start sites (TSS). The default value is c(-3000, 3000); meaning peak frequency 3000bp upstream and downstream of TSS will be displayed.
conf	Confidence interval threshold estimated by bootstrapping (0.95 means 95 Argument passed to plotAvgProf.
resample	Number of bootstrapped iterations to run. Argument passed to plotAvgProf.
interact	Default TRUE. By default, plots are interactive. If set FALSE, all plots in the report will be static.
workers	Number of cores to parallelise bootstrapping across. Argument passed to plotAvg-Prof.

width_boxplot 59

Value

A named list of profile plots.

Examples

width_boxplot

Peak width boxplot

Description

This function creates boxplots showing the distribution of widths in each peak file.

Usage

```
width_boxplot(peaklist, interact = FALSE)
```

Arguments

peaklist A list of peak files as GRanges object. Files must be named and listed using

list(). e.g. list("name1"=file1, "name2"=file2)

interact Default TRUE. By default, plots are interactive. If set FALSE, all plots in the

report will be static.

Value

A boxplot of peak widths.

```
### Load Data ###
data("encode_H3K27ac") # example peaklist GRanges object
data("CnT_H3K27ac") # example peaklist GRanges object
peaklist <- list("encode"=encode_H3K27ac, "CnT"=CnT_H3K27ac)
my_plot <- width_boxplot(peaklist = peaklist)</pre>
```

60 write_example_peaks

write_example_peaks
Write example peaks

Description

Write example peaks datasets to disk.

Usage

```
write_example_peaks(
  dir = file.path(tempdir(), "processed_results"),
  datasets = c("encode_H3K27ac", "CnT_H3K27ac", "CnR_H3K27ac")
)
```

Arguments

dir Directory to save peak files to.

datasets Example datasets from **EpiCompare** to write.

Value

Named vector of paths to saved peak files.

```
save_paths <- EpiCompare::write_example_peaks()</pre>
```

Index

* datasets	BiocParallel, 25	
CnR_H3K27ac, 9	BiocParallel::bplapply, 5	
CnR_H3K27ac_picard, 10	BiocParallelParam, 5	
CnT_H3K27ac, 11	bplapply, 4	
CnT_H3K27ac_picard, 11	bpoptions, 5	
encode_H3K27ac, 17	bpplapply, 4, 45, 52	
hg19_blacklist, 27	3pp1app13, 1, 75, 52	
hg38_blacklist, 28	check_cell_lines, 6	
mm10_blacklist, 31	check_genome_build, 7	
	<pre>check_grlist_cols, 7</pre>	
mm9_blacklist, 32	check_list_names, 8	
* internal	check_workers, 8	
as_interactive, 4	checkCache, 6	
check_cell_lines, 6	clean_granges, 9	
check_genome_build,7	closeAllConnections, 13	
check_grlist_cols,7	CnR_H3K27ac, 9	
check_list_names, 8	CnR_H3K27ac_picard, 10	
checkCache, 6	CnT_H3K27ac, 11	
clean_granges, 9	CnT_H3K27ac_picard, 11	
fig_length, 22	compareCluster, 41	
<pre>gather_files_names, 24</pre>	compute_consensus_peaks, 12, 13	
get_bpparam, 25	compute_corr, 14	
${\tt get_chromHMM_annotation}, 26$	consensusSeekeR::findConsensusPeakRegions,	
is_granges, 29	13	
message_parallel,31		
messager, 30	data.table, 51	
<pre>precision_recall_matrix, 45</pre>	download_button, 16	
predict_values, 47		
prepare_blacklist, 47	encode_H3K27ac, 17	
prepare_genome_builds, 48	enrichPeakOverlap, <i>34</i>	
prepare_peaklist, 49	EpiCompare, 18, 54	
prepare_reference, 50		
read_bowtie, 50	fig_length, 22	
read_peaks, 51	findConsensusPeakRegions, 12	
remove_nonstandard_chrom, 53	fragment_info, 22	
save_output, 55	gather_files, 23, 24	
set_min_max, 55	gather_files_names, 24	
stopper, 56	get_bpparam, 25	
	get_chromHMM_annotation, 26, 38	
as interactive 4	_	
as_interactive, 4	ggplot, 4	

62 INDEX

GRanges, 7, 9, 12, 13, 19, 23, 24, 26, 29, 30,	report_header, 54
42–44, 48–51, 53, 54	save_output, 55
GRangesList, 30, 49, 50	
group_files,27	seqlevelsStyle, 30
1 40 13 13: 4 10 07 40	SerialParam, 25
hg19_blacklist, 19, 27, 49	set_min_max, 55
hg38_blacklist, <i>19</i> , 28, <i>49</i>	SnowParam, 5, 25, 45, 53
. 20	stop, <i>56</i>
is_granges, 29	stopper, 56
	subsetByOverlaps, 33
layout, 4	
liftover_grlist, <i>15</i> , 29, <i>40</i> , <i>52</i>	tagList,4
list, <i>38</i>	tidy_peakfile, 56
	translate_genome, 57
message, 30	tss_plot, 58
message_parallel,31	
messager, 30	width_boxplot, 59
mm10_blacklist, <i>19</i> , 31, <i>49</i>	write_example_peaks, 60
mm9_blacklist, <i>19</i> , 32, <i>49</i>	
MulticoreParam, <i>5</i> , <i>25</i> , <i>45</i> , <i>53</i>	
opts_chunk, 21	
overlap_heatmap, 32	
overlap_percent, 33	
overlap_stat_plot, 34	
overlap_upset_plot, 35	
peak_info, 36	
plot_ChIPseeker_annotation,37	
plot_chromHMM, 38	
plot_corr, 20, 39	
plot_enrichment, 41	
plot_precision_recall, 20, 42	
plotAvgProf, 58	
plotly, 4	
precision_recall, 44, 46	
precision_recall_matrix, 45	
predict_precision_recall, 46	
predict_values, 47	
prepare_blacklist, 47	
prepare_genome_builds, 48	
prepare_peaklist,49	
prepare_reference, 50	
read_bowtie,50	
read_peaks, 51	
rebin_peaks, 51	
register, 5, 25, 45, 53	
_	
remove_nonstandard_chrom, 53	
report command, 54	