BatchQC 2.2.0
This data set is from protein expression data captured for 39 proteins. It has two batches and two conditions corresponding to case and control.
library(BatchQC)
data(protein_data)
data(protein_sample_info)
se_object <- BatchQC::summarized_experiment(protein_data, protein_sample_info)
This data set is from signature data captured when activating different growth pathway genes in human mammary epithelial cells (GEO accession: GSE73628). This data consists of three batches and ten different conditions corresponding to control and nine different pathways
data(signature_data)
data(batch_indicator)
se_object <- BatchQC::summarized_experiment(signature_data, batch_indicator)
This data set is from bladder cancer data. This dataset has 57 bladder samples with 5 batches and 3 covariate levels (cancer, biopsy, control). Batch 1 contains only cancer, 2 has cancer and controls, 3 has only controls, 4 contains only biopsy, and 5 contains cancer and biopsy. This data set is from the bladderbatch package which must be installed to use this data example set (Leek JT (2023). bladderbatch: Bladder gene expression data illustrating batch effects. R package version 1.38.0).
if (!requireNamespace("bladderbatch", quietly = TRUE))
BiocManager::install("bladderbatch")
se_object <- BatchQC::bladder_data_upload()
## R version 4.4.1 (2024-06-14)
## Platform: aarch64-apple-darwin20
## Running under: macOS Ventura 13.6.7
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BatchQC_2.2.0 BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 ggdendro_0.2.0
## [3] jsonlite_1.8.9 magrittr_2.0.3
## [5] magick_2.8.5 NCmisc_1.2.0
## [7] farver_2.1.2 rmarkdown_2.29
## [9] zlibbioc_1.52.0 vctrs_0.6.5
## [11] memoise_2.0.1 EBSeq_2.4.0
## [13] tinytex_0.54 htmltools_0.5.8.1
## [15] S4Arrays_1.6.0 BiocNeighbors_2.0.0
## [17] SparseArray_1.6.0 sass_0.4.9
## [19] KernSmooth_2.23-24 bslib_0.8.0
## [21] htmlwidgets_1.6.4 plyr_1.8.9
## [23] testthat_3.2.1.1 plotly_4.10.4
## [25] cachem_1.1.0 igraph_2.1.1
## [27] mime_0.12 lifecycle_1.0.4
## [29] pkgconfig_2.0.3 rsvd_1.0.5
## [31] Matrix_1.7-1 R6_2.5.1
## [33] fastmap_1.2.0 GenomeInfoDbData_1.2.13
## [35] MatrixGenerics_1.18.0 shiny_1.9.1
## [37] digest_0.6.37 colorspace_2.1-1
## [39] ggnewscale_0.5.0 AnnotationDbi_1.68.0
## [41] S4Vectors_0.44.0 DESeq2_1.46.0
## [43] dqrng_0.4.1 irlba_2.3.5.1
## [45] crosstalk_1.2.1 GenomicRanges_1.58.0
## [47] RSQLite_2.3.7 beachmat_2.22.0
## [49] labeling_0.4.3 fansi_1.0.6
## [51] httr_1.4.7 abind_1.4-8
## [53] mgcv_1.9-1 compiler_4.4.1
## [55] withr_3.0.2 bit64_4.5.2
## [57] BiocParallel_1.40.0 DBI_1.2.3
## [59] gplots_3.2.0 MASS_7.3-61
## [61] DelayedArray_0.32.0 bluster_1.16.0
## [63] gtools_3.9.5 caTools_1.18.3
## [65] tools_4.4.1 httpuv_1.6.15
## [67] glue_1.8.0 nlme_3.1-166
## [69] promises_1.3.0 grid_4.4.1
## [71] cluster_2.1.6 reshape2_1.4.4
## [73] generics_0.1.3 sva_3.54.0
## [75] gtable_0.3.6 tidyr_1.3.1
## [77] data.table_1.16.2 BiocSingular_1.22.0
## [79] ScaledMatrix_1.14.0 metapod_1.14.0
## [81] utf8_1.2.4 XVector_0.46.0
## [83] BiocGenerics_0.52.0 pillar_1.9.0
## [85] stringr_1.5.1 limma_3.62.1
## [87] genefilter_1.88.0 later_1.3.2
## [89] splines_4.4.1 dplyr_1.1.4
## [91] lattice_0.22-6 survival_3.7-0
## [93] reader_1.0.6 bit_4.5.0
## [95] annotate_1.84.0 tidyselect_1.2.1
## [97] SingleCellExperiment_1.28.0 locfit_1.5-9.10
## [99] Biostrings_2.74.0 scuttle_1.16.0
## [101] knitr_1.49 bookdown_0.41
## [103] blockmodeling_1.1.5 IRanges_2.40.0
## [105] edgeR_4.4.0 SummarizedExperiment_1.36.0
## [107] stats4_4.4.1 xfun_0.49
## [109] Biobase_2.66.0 statmod_1.5.0
## [111] brio_1.1.5 matrixStats_1.4.1
## [113] pheatmap_1.0.12 stringi_1.8.4
## [115] UCSC.utils_1.2.0 lazyeval_0.2.2
## [117] yaml_2.3.10 evaluate_1.0.1
## [119] codetools_0.2-20 RcppEigen_0.3.4.0.2
## [121] tibble_3.2.1 BiocManager_1.30.25
## [123] cli_3.6.3 shinythemes_1.2.0
## [125] xtable_1.8-4 munsell_0.5.1
## [127] jquerylib_0.1.4 Rcpp_1.0.13-1
## [129] GenomeInfoDb_1.42.0 tidyverse_2.0.0
## [131] png_0.1-8 XML_3.99-0.17
## [133] parallel_4.4.1 ggplot2_3.5.1
## [135] blob_1.2.4 scran_1.34.0
## [137] bitops_1.0-9 viridisLite_0.4.2
## [139] scales_1.3.0 purrr_1.0.2
## [141] crayon_1.5.3 rlang_1.1.4
## [143] KEGGREST_1.46.0 shinyjs_2.1.0